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Abstract

Brain/mind modularity is a contentious issue in cognitive science. Cognitivists tend to conceive of the mind as a set of

distinct specialized modules and they believe that this rich modularity is basically innate. Cognitivist modules are

theoretical entities which are postulated in “boxes-and-arrows” models used to explain behavioral data. On the other

hand, connectionists tend to think that the mind is a more homogeneous system that basically genetically inherits only a

general capacity to learn from experience and that if there are modules they are the result of development and learning

rather than being innate. In this chapter we argue for a form of connectionism which is not anti-modularist or anti-

innatist. Connectionist modules are anatomically separated and/or functionally specialized parts of a neural network and

they may be the result of a process of evolution in a population of neural networks. The new approach, Evolutionary

Connectionism, does not only allow us to simulate how genetically inherited information can spontaneously emerge in

populations of neural networks, instead of being arbitrarily hardwired in the neural networks by the researcher, but it

makes it possible to explore all sorts of interactions between evolution at the population level and learning at the level

of the individual that determine the actual phenotype. Evolutionary Connectionism shares the main goal of Evolutionary

Psychology, that is, to develop a psychology informed by the importance of evolutionary process in shaping the

inherited architecture of human mind, but differs from Evolutionary Psychology for three main reasons: (1) it uses

neural networks rather than cognitive models for interpreting human behavior; (2) it adopts computer simulations for

testing evolutionary scenarios; (3) it has a less pan-adaptivistic view of evolution and it is more interested in the rich

interplay between genetically inherited and experiential information. We present two examples of evolutionary

connectionist simulations that show how modular architectures can emerge in evolving populations of neural networks.
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1 Connectionism is not necessarily anti-modularist or anti-innatist

In a very general and abstract sense modular systems can be defined as systems made up of

structurally and/or functionally distinct parts. While non-modular systems are internally

homogeneous, modular systems are segmented into modules, i.e., portions of a system having a

structure and/or function different from the structure or function of other portions of the system.

Modular systems can be found at many different levels in the organization of organisms, for

example at the genetic, neural, and behavioral/cognitive level, and an important research question is

how modules at one level are related to modules at another level.

In cognitive science, the interdisciplinary research field that studies the human mind, modularity is

a very contentious issue. There exist two kinds of cognitive science, computational cognitive

science and neural cognitive science. Computational cognitive science is the more ancient

theoretical paradigm. It is based on an analogy between the mind and computer software and it

views mind as symbol manipulation taking place in a computational system (Newell & Simon,

1976). More recently a different kind of cognitive science, connectionism, has arisen which rejects

the mind/computer analogy and interprets behavior and cognitive capacities using theoretical

models which are directly inspired by the physical structure and way of functioning of the nervous

system. These models are called neural networks, large sets of neuron-like units interacting locally

through connections resembling synapses between neurons. For connectionism mind is not symbol

manipulation and is not a computational system but is the global result of the many interactions

taking place in a network of neurons modeled with an artificial neural network and consists entirely

of quantitative processes in which physico-chemical causes produce physico-chemical effects. This
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new type of cognitive science can be called neural cognitive science (Rumelhart & McClelland,

1986).

Computational cognitive science tends to be strongly modularistic. The computational mind is made

up of distinct modules which specialize in processing distinct types of information, have specialized

functions, and are closed to interference from other types of information and functions (Chomsky,

1980; Fodor, 1983). Computational cognitive models are schematized as “boxes-and-arrows”

diagrams (for an example see Figure 1). Each box is a module with a specific function and the

arrows connecting boxes indicate that information processed by some particular module is then

passed on to another module for further processing. In contrast, connectionism tends to be

antimodularistic. In neural networks information is represented by distributed patterns of activation

in potentially large sets of units and neural networks function by transforming activation patterns

into other activation patterns through the connection weights linking the network’s units. Most

neural network models are not divided up into any kind of modules except for the distinction

between input units, output units, and one or more layers of intermediate (hidden or internal) units

(for an example see Figure 4, left).

One cannot really understand the contrast between modularism and antimodularism in cognitive

science, however, if one does not consider another contrast which opposes computational cognitive

science (cognitivism) to neural cognitive science (connectionism). This is the contrast between

innatism and anti-innatism. Cognitivists tend to be innatist. Modules are assumed to be specified in

the inherited genetic endowment of the species and of each individual. For evolutionary
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Figure 1. An example of “boxes-and-arrows” model: the dual-route model for the English past tense (Pinker & Prince

1988). “The model involves a symbolic regular route that is insensitive to the phonological form of the stem and a route

for exceptions that is capable of blocking the output from the regular route” (Plunkett, 1996).

psychologists, who tend to be cognitivists, the modular structure of the mind is the result of

evolutionary pressures and evolutionary psychologists are convinced that it is possible to identify

the particular evolutionary pressures behind each module. Hence, evolutionary psychologists

(Cosmides & Tooby, 1994) embrace a strong form of adaptivism. They not only think that modules

are already there in the genetic material but they think that modules are in the genes because in the

evolutionary past individuals with a particular module in their genes have generated more offspring

than individuals without that genetically specified module. This pan-adaptivism is not shared by all

cognitivists, however. For example, the linguist Noam Chomsky believes that the mind is

computational and that there is a specific mental module specialized for language (or for syntax) but

he does not believe that language in humans has emerged under some specific evolutionary pressure

(cf. Fodor, 2000). As some evolutionary biologists, in particular Gould (1997), have repeatedly
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stressed, what is genetically inherited is not necessarily the result of specific evolutionary pressures

and is not necessarily adaptive but it can also be the result of chance, it can be the adaptively neutral

accompaniment of some other adaptive trait, or an exaptation, i.e., the use for some new function of

a trait which has evolved for another function (Gould & Vrba, 1982). More recently, the contrast

between Steven Pinker and Jerry Fodor, who are both well-known cognivists and innatists, has

shown how the adaptive nature of inherited traits can divide computational cognitive scientists.

Pinker (Pinker, 1999) has argued for a strong form of adaptive modularism while Fodor is in favor

of a strong form of non-adaptive modularism (Fodor, 1998).

In contrast to cognitivists, connectionists tend to be anti-innatist. Connectionism is generally

associated with an empiricist position that considers all of mind as the result of learning and

experience during life. What is genetically inherited, in humans, is only a general ability to learn.

This general ability to learn, when it is applied to various areas of experience, produces the diverse

set of capacities which are exhibited by humans.

The matter is further complicated if one considers development. Development is the mapping of the

genetic information into the adult phenotype. This mapping is not instantaneous but is a process that

takes time to complete, and in fact development consists of a temporal succession of phenotypical

forms. When one recognizes that the genotype/phenotype mapping is a temporal process, the door is

open for an influence of learning and experience on the phenotype. Therefore, cognitivists tend to

be not only innatists but also antidevelopmentalists. Cognitivist developmental psychologists (e.g.,

Spelke et al., 1992; Wynn, 1992) tend to think that modules are already there in the phenotype since

the first stages of development and that there is not much of real importance that actually changes

during life. Furthermore, as innatists, they think that even if something changes during development

it is due not to learning and experience but to some temporal scheduling encoded in the genetically

inherited information, like sexual maturity which is not present at birth but it is genetically
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scheduled to emerge at some later time during life. On the contrary, developmental psychologists

who are closer to connectionism (Karmiloff-Smith, 2000) tend to think that modules are not present

in the phenotype from birth, i.e., in newborns or in infants, but develop later in life and,

furthermore, they believe that modules are only very partially encoded in the genotype but are the

result of complex interactions between genetically encoded information and learning and

experience.

In the present paper we want to argue for a form of connectionism which is not anti-modularist or

anti-innatist. Connectionism is not necessarily anti-innatist. Even if many neural network

simulations use some form of learning algorithm to find the connection weights that make it

possible for a neural network to accomplish some particular task, connectionism is perfectly

compatible with the recognition that some aspects of a neural network are not the result of learning

but they are genetically inherited. For example, since most simulations start from a fixed neural

network architecture one could argue that this network architecture is genetically given and the role

of learning is restricted to finding the appropriate weights for the architecture. In fact, Elman et al.

(1996) have argued that connectionist networks allow the researcher to go beyond cognitivism,

which simply affirms that this or that is innate, to explore in a detailed way what can be innate and

what can be learned by showing how phenotypical capacities can result from an interaction between

what is innate and what is learned. These authors distinguish among different things that can be

innate in a neural network: the connection weights (and therefore the neural representations as

patterns of activation across sets of network units), architectural constraints (at various levels: at the

unit, local, and global level), and chronotopic constraints (which determine when things happen

during development). One could also add that the connections weights may be learned during life

but there may genetically inherited constraints on them, for example their maximum value or their

“sign” (for excitatory or inhibitory connections) may be genetically specified or the genotype may

encode the value of learning parameters such as the learning rate and momentum (Belew et al.,
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1992). As we will show later in this chapter, modularity can emerge in neural networks as a

function of genetically inherited architectural constraints and chronotopic constraints.

However, to argue that something is innate in a neural network it is not sufficient that some of the

properties of the neural network are hardwired by the researcher in the neural network but it is

necessary to actually simulate the evolutionary process that results in these genetically inherited

properties or constraints. Artificial Life simulations differ from the usual connectionist simulations

in that Artificial Life uses genetic algorithms (Holland, 1992) to simulate the evolutionary process

and to evolve the genetically inherited properties of neural networks (Parisi et al., 1990; Calabretta

et al., 1996). Unlike traditional connectionist simulations Artificial Life simulations simulate not an

individual network that learns, based on its individual experience, some particular capacity, but they

simulate an entire population of neural networks made up of a succession of generations of

individuals each of which is born with a genotype inherited from its parents. Using a genetic

algorithm, the simulation shows how the information encoded in the inherited genotypes changes

across the successive generations because reproduction is selective and new variants of genotypes

are constantly added to the genetic pool of the population through genetic mutations and sexual

recombination. At the end of the simulation the inherited genotypes can be shown to encode the

desired neural network properties that represent innate constraints on development and behavior.

We call this type of connectionism Evolutionary Connectionism.

We can summarize the three options that are currently available to study the behavior of organisms

with the Table 1.

Evolutionary connectionist simulations do not only allow us to study how genetically inherited

information can spontaneously emerge in populations of neural networks, instead of being

arbitrarily hardwired in the neural networks by the researcher, but they make it possible to explore
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COMPUTATIONAL
COGNITIVE

SCIENCE
or

COGNITIVISM

Mind as symbol
manipulation
taking place in a
computer-like
system

INNATIST MODULARIST

NEURAL
COGNITIVE

SCIENCE
or

CONNECTIONISM

Mind as the global
result of the many
physico-chemical
interactions taking
place in a network
of neurons

ANTI- INNATIST ANTI-
MODULARIST

EVOLUTIONARY
CONNECTIONISM

Mind as the global
result of the many
physico-chemical
interactions taking
place in a network
of neurons

INTERACTION
BETWEEN

EVOLUTION AND
LEARNING

MODULARIST

Table 1. Three options for studying behavior and mind

all sorts of interactions between evolution at the population level and learning at the level of the

individual that determine the actual phenotype.

In this chapter we describe two evolutionary connectionist simulations that show how modular

architectures can emerge in evolving populations of neural networks. In the first simulation every

network property is genetically inherited (i.e., both the network architecture and the connection

weights are inherited) and modular architectures result from genetically inherited chronotopic

constraints and growing instructions for units’ axons. In the second simulation the network

architecture is genetically inherited but the connection weights are learned during life. Therefore,

adaptation is the result of an interaction between what is innate and what is learned.

2 Cognitive vs. neural modules

Neural networks are theoretical models explicitly inspired by the physical structure and way of

functioning of the nervous system. Therefore, given the highly modular structure of the nervous

system it is surprising that so many neural network architectures that are used in connectionist
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simulations have internally homogeneous architectures and do not contain separate modules. Brains

are not internally homogeneous systems but they are made up of anatomically distinct parts and

distinct portions of the brain are clearly more involved in some functions than in others. Since it is

very plausible that human brains are able to exhibit so many complex capacities not only because

they are made up of 100 billion neurons but also because these 100 billion neurons are organized as

a richly modular system, future connectionist research should be aimed at reproducing in neural

networks the rich modular organization of the brain.

However, even if, as we will shown by the two simulations described in this chapter, connectionist

simulations can address the problem of the evolution of modular network architectures, it is

important to keep in mind that the notion of a module is very different for cognitivists and for

connectionists. Cognitivistic modularism is different from neural modularism.

For cognitivists modules tend to be components of theories in terms of which empirical phenomena

are interpreted and accounted for. A theory or model of some particular phenomenon hypothesizes

the existence of separate modules with different structure and/or function which by working

together explain the phenomenon of interest. Therefore, cognitivist modules are postulated rather

than observed entities. For example, in formal linguistics of the Chomskian variety syntax is

considered as an autonomous module of linguistic competence in that empirical linguistic data (the

linguistic judgements of the native speaker) are interpreted as requiring this assumption. Or, in

psycholinguistics, the observed linguistic behavior of adults and children is interpreted as requiring

two distinct modules, one supporting the ability to produce the past tense of regular English verbs

(e.g., worked) and the second one underlying the ability to produce the past tense of irregular verbs

(e.g., brought) (Pinker & Prince, 1988; see Figure 1). This purely theoretical notion of a module is

explicitly defended and precisely defined in Fodor’s book The Modularity of mind (Fodor, 1983),

one of the foundational books of computational cognitive science.
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The same is true for evolutionary psychology which, as we have said, has a cognitivist orientation.

Evolutionary psychology’s conception of the mind as a “Swiss knife”, that is, as a collection of

specialized and genetically inherited adaptive modules, is based on a notion of module according to

which modules are theoretical entities whose existence is suggested by the observed human

behavior.

Neuroscientists also have a modular conception of the brain. For example, Mountcastle (cited in

Restak, 1995, p. 34) maintains that “the large areas of the brain are themselves composed of

replicated local neural circuits, modules, which vary in cell number, intrinsic connections, and

processing mode from one brain area to another but are basically similar within any area.”

However, the neuroscientists’ conception of the brain is based on empirical observations of the

anatomy and physiology of the brain rather than on theory (see Figure 2). The brain obviously is

divided up into a variety of ‘modules’ such as distinct cortical areas, different subcortical structures,

interconnected sub-systems such as the retina-geniculate-visual cortex for vision or the basal

ganglia-frontal cortex subsystem for attention. This rich modularity of the brain, both structural

(anatomical and cytoarchitectonic) and functional (physiological), is evidenced by direct

(instrumental) observation, by data on localization of lesions in various behavioral/mental

pathologies and on neuropsychological dissociations, and more recently and increasingly, by

neuroimaging data.

One can look for correspondences between the two types of modules, the theoretical modules of

computational cognitive science and the observed ‘modules’ of the brain. This is what cognitive

neuropsychologists are supposed to do. They interpret the behavioral deficits of patients using the

“box-and arrows” theoretical models of cognitive psychology (see Figure 1) – where boxes are

modules and arrows indicate the relationship between modules – and then they try to match this
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Figure 2. The major routes of visual input into the dorsal and ventral streams. The diagram of the macaque brain shows

the approximate routes of the cortico-cortical projections from the primary visual cortex to the posterior parietal and the

inferotemporal cortex, respectively (Milner & Goodale, 1998). According to Ungerleider and Mishkin (1982), the

ventral stream plays a critical role in the identification and recognition of objects (i.e., the 'what' task), while the dorsal

stream mediates the localization of those same objects (i.e., the 'where' task).

modular analysis with observations and measurements on localization of lesions and other physical

data on patients’ brain. However, one cannot assume that the modular theoretical models of

computational cognitive science necessarily correspond to the observed modular structure and

functioning of the brain. Cognitive modules may not match the physical (neural) structural or

functional ‘modules’ of the brain, and the brain can be organized into distinct ‘modules’ which do

not translate into distinct components of the theoretical models in terms of which psychologists and

cognitive scientists interpret and explain behavioral data.

This is particularly important to keep in mind when one turns to an alternative type of theoretical

models which can be used to interpret and explain behavioral data and cognitive capacities, i.e.,
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neural networks. Neural networks are theoretical models which, unlike the theoretical models of

cognitivist psychology and computational cognitive science, are directly inspired by the physical

structure and way of functioning of the brain. Hence, neural networks are at the same time models

of the brain and models of the mind. The neural networks used in most simulations so far have been

nonmodular. They are a homogeneous network of units with minimal structure constituted by an

input module (i.e., set of units), an output module, and (almost always) a single internal module in

between. However, this should be a considered as a limitation of current neural network models, not

as an intrinsic property of these models. If neural networks claim to be inspired by the structure and

functioning of brain, they must be modular since the brain is modular. Notice, however, that the

modules of neural networks will be more similar to the modules of the brain than to the theoretical

“boxes” of the “boxes-and-arrows” models of computational cognitive science. A module in a

modular neural network is a (simulated) physical module, not a postulated theoretical construct. A

neural module can be a sub-set of network units with more internal connections linking the units of

the module among themselves than external connections linking the units of the module with units

outside the module. Or, more functionally, a neural network module can be an observed correlated

activity of a sub-set of the network’s units, even without ‘anatomical’ isolation of that sub-set of

units. If the modular structure of a neural network is hardwired by the researcher, the researcher

should be inspired by the actual modular structure of the brain rather than by theoretical

considerations based on cognitive models. If, more in the spirit of neural cognitive science, the

network architecture is not hardwired by the researcher but is a result of evolution, development,

and/or learning, the researcher should be interested in ascertaining if the emerging modular

structure matches the actual modularity of the brain.

As we have said, connectionist research tends to be considered as anti-modularist, in contrast to the

strongly modular cognitive models. This is factually correct because most neural network

architectures actually used in connectionist simulations are nonmodular and because connectionism



14

tends to underscore the role of general learning mechanisms rather than that of genetically inherited

specific modules in shaping the behavior of organisms. However, as we have also said, neural

network research need not be anti-modularist and need not downplay the role of genetically

inherited information. The real contrast between neural network models and cognitive models does

not concern modularity in itself but rather the nature of modules and the question of what

theoretical models are appropriate to explain behavior and cognition.

Consider the cognitivist hypothesis that English speakers produce the past tense of verbs using two

distinct modules, one for regular verbs and the other for irregular verbs (Pinker, 1999; see Figure 1).

There appears to be some empirical evidence that these two modules might reside in physically

separate parts of the brain. Patients with lesions in the anterior portion of the brain tend to fail to

produce regular past tense forms while their ability to produce irregular past tense forms appears to

be preserved. In contrast, patients with lesions in the posterior portion of the brain tend to show the

opposite pattern. They find it difficult to produce irregular past tenses whereas they are able to

produce regular ones. This may indicate that two distinct neural modules actually underlie past

tense production. This is completely acceptable for a connectionist (at least for the variety of

connectionism represented by the authors of this paper), who will try to simulate the behavior of

producing the past tense of verbs using a modular network with two distinct modules, one for

regular verbs and another for irregular verbs. (These two modules could be either structural or

functional, in the sense defined above.)

What distinguishes the cognitive and the neural approach to the treatment of past tense is the nature

of the modules. Cognitivists claim that the regular past tense module is a rule-based module. When

producing the past of the verb to work, the brain is applying the rule: “Add the suffix -ed to the verb

root”. In contrast, the irregular past tense module is an association-based module containing a finite

list of verb roots each associated with its irregular past tense form. The brain just consults this list of



15

associations, finds the appropriate verb root (for example, bring), and produces the corresponding

past tense form (brought).

This theoretical interpretation of past tense behavior is rejected by a connectionist simply because

his or her theoretical tools, i.e., neural network models, do not allow for this interpretation. Neural

network models are inspired by the brain, and brains are physical systems made up of physical

entities and processes in which all that can ever happen is the production of physico-chemical

effects by physico-chemical causes. Hence, in principle a neural network cannot appeal to a rule as

an explanation of any type of behavior and cognitive ability. A connectionist can accept that

separate and distinct portions of the brain, and of the neural network that simulates the brain, may

be responsible for the production of regular past tense forms and of irregular past tense forms.

However, both neural modules cannot but function in the same basic way: units are activated by

excitations and inhibitions arriving from other connected units. This does not rule out the possibility

that one can discover differences in the organization and functioning of the two different neural

modules for regular and irregular English verbs and of course this requires an explanation of why

the brain has found it useful to have two separate modules for controlling verb past tense behavior

instead than only one. This poses the question of the origin of modules to which we turn in the next

Section.

3 Evolutionary connectionist simulations: an evolutionary and developmental approach to the

study of neural modularity

In this Section we describe two evolutionary connectionist simulations in which modular network

architectures evolve spontaneously in populations of biologically reproducing neural networks. The

two simulations address only some of the many different problems and phenomena that may arise

as a result of the complex interactions between the adaptive process at the population level
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(evolution) and the adaptive process at the individual level (learning) and that may be studied using

evolutionary connectionist simulations. In the first simulation a modular architecture emerges as

part of a process of development taking place during the life of the individual which is shaped by

evolution but does not takes experiential and environmental factors during development into

consideration. Furthermore, the connections weights for this network architecture are also

genetically inherited. In the second simulation evolution actually interacts with learning because the

network architecture evolves and is genetically inherited while the connection weights for this

architecture are learned during life.  (For other simulations on the evolution of modular network

architectures, cf. Murre, 1992.)

3.1 Evolution and maturation of modules

Cecconi & Parisi (1993) have described some simulations of organisms which live in an

environment containing food and water and which to survive have to ingest food when they are

hungry and water when they are thirsty. The behavior of these organisms is influenced not only by

the external environment (the current location of food and water elements) but also by the

motivational state of the organism (hunger or thirst) which is currently driving its behavior. The

body is hungry until a given number of food elements have been eaten and then it becomes thirsty

and, similarly, thirst becomes hunger after a given number of water elements have been drank. At

any given time the motivational state of the organism is encoded in a special set of "motivational"

units representing an internal input (coming from inside the body) which, together with the external

input encoding sensory information about the location of food and water, sends activation to the

network’s hidden units and therefore determines the network’s output. The network’s output

encodes the displacements of the organism in the environment to reach food or water.
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In Cecconi and Parisi’s simulations the network architecture is fixed, hardwired by the researcher,

and nonmodular. By using a genetic algorithm for evolving the connection weights, the authors

demonstrate that the organisms evolve the appropriate weights for the connections linking the

motivational units to the hidden units in such a way that the current motivational state appropriately

controls the organisms’ behavior. When the organisms are hungry they look for food and ignore

water. When they are thirsty they look for water and ignore water.

But what happens if, instead of hardwiring it, we try to evolve the architecture by means of a

genetic algorithm? Is the evolved architecture modular or nonmodular?

To answer this question Cangelosi et al. (1994) added a model of neural development to the

simulation of Cecconi and Parisi (1993). In the new model the network architecture, instead of

being hardwired by the researcher, is the eventual result of a process of cell division and migration

and of axonal growth and branching which takes place during the life of the individual organism.

Unlike most simulations using genetic algorithms to evolve the architecture of neural networks

(Yao, 1999), in Cangelosi et al.’s model the genotype does not directly encode the connectivity

pattern of the network. What is specified in the genotype is the initial spatial location (in

bidimensional space) of a set of simulated neurons (network units), the rules that control the

migration of each neuron within the bidimensional space, and the growth parameters of each

neuron’s axon after the neuron has reached its final location. When a new individual is born a

process of neural development takes place in the individual. First, each of the individual’s neurons

is placed in the bidimensional space of the nervous system according to the x and y coordinates

specified in the genotype for that neuron. Second, each neuron displaces itself in neural space

according to other genetically specified information until it reaches its final location. Third, after

reaching its final location the neuron grows its axon according to growth instructions (orientation

and length of axonal branches) also specified in the genotype. When the axonal branch of a neuron
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reaches another neuron a connection between the two neurons is established and the connection is

given a connection weight which is also specified in the genotype.

A genetic algorithm controls the evolution of the population of organisms. Starting from an initial

population with randomly generated genotypes, the best individuals, i.e., those that are best able to

eat when hungry and drink when thirsty, are selected for reproduction and the offspring’s genotypes

are slightly modified by some random genetic mutations. The result is that after a certain number of

generations the organisms are able to reach for food when they are hungry while ignoring water and

to reach for water when they are thirsty while ignoring food.

Notice that in the genotype neurons are not specified as being input neurons, output neurons, or

hidden neurons. The total bidimensional space of the brain is divided up into three areas, a lower

area that will contain input units (both external sensory units and internal motivational units), a

intermediate area that will contain hidden units, and a higher area that will contain motor output

units. If during development a neuron ends up in one of these three areas it takes the function (input,

hidden, or output) specified by the area. Furthermore, if a neuron ends up in the input area it can

either be a sensory neuron encoding environmental information on location of food and water or a

motivational neuron encoding internal (bodily) information on whether the organism needs food (is

hungry) or water (is thirsty). Individual organisms can be born with a variety of defective neural

networks (no input units for food or water or for hunger/thirst, no motor output units, no appropriate

connectivity pattern) but these individuals do not have offspring and their defective genotypes are

eliminated from the population’s genetic pool.

What network architectures emerge evolutionarily? Are they modular?
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Evolved network architectures contain two distinct neural pathways or modules: one for food and

the other for water. When the motivational state is "hunger" only some of the hidden units have

activation states that vary with variations in input information about food location, while variations

in input information about water location do not affect these hidden units (Cf. Figure 3, left). This is

the food module. Conversely, when the motivational state is "thirst", water input information

controls the activation level of the remaining hidden units which are insensitive to sensory

information about food. This is the water module. All successful architectures contain motivational

units that send their connections to both the food module and the water module and, on the basis of

their activation (hunger or thirst), alternatively give control of the organism’s behavior to either

food or water.

This shows that, unlike the network architecture hardwired by Cecconi and Parisi (1993) which was

nonmodular, if we allow evolution to select the best adapted network architectures, the evolved

architectures are modular. The neural network prefers to elaborate information about food and

information about water in dedicated sub-networks that we can call modules.

However, as real brain modules as contrasted with cognitive “boxes-and-arrows” models and even

hardwired modular architectures, evolved neural modules are not completely isolated or insulated

modules. In the evolved architectures of Cangelosi et al. the water pathway includes some units

which are specialized for processing information about water but also some units which are also

used to process information about food. In other words, while information about water is blocked

by the network’s connection weights when the organism is hungry and it is trying to approach food,

information about food has some role even when the organism is thirsty and it is trying to approach
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Figure 3. Food pathway and water pathway are shown in bold on the left and right side, respectively (Cangelosi et al.,

1994).

water (Cf. Figure 3, right). Interestingly, the asymmetry between the two neural pathways or

modules appears to be related to the history of the evolution of the two abilities of finding food and

finding water since the ability to find food begins to emerge evolutionarily in this population earlier

than the ability to find water.

The fact that the water module includes some units that are also part of the food module, together

with the historically contingent fact that the food module emerges earlier than the water module,

demonstrate the role of historical contingency in evolved systems. Since for chance reasons the

water pathway emerges evolutionarily after the food pathway (i.e., some generations later), the

evolutionary process cannot but take what has already evolved into consideration. As a

consequence, some of the hidden units dedicated to processing food-related sensory information

will end up among the hidden units dedicated to processing water-related information. The lesson
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that can be derived from this result is that it can in some cases be erroneous to explain the

morphological or functional characteristics of organisms in exclusively adaptivistic terms (as

evolutionary psychologists tend to do; cf. Barkow, Cosmides, and Tooby, 1992; Buss, 1999). As

suggested by Gould and others (cf. Gould & Lewontin, 1979), evolutionary reality is more complex

and some evolved characteristics can be just the by-product of other, directly selected,

characteristics or be the result of chance. Artificial Life simulations can help us demonstrate these

different mechanisms and processes that result in the evolutionary emergence of organismic

characteristics.

The results obtained with these very simple simulations demonstrate how evolving the network

architectures, instead of hardwiring (i.e., postulating) them, might have important consequences for

the study of neural modularity in organisms that must accomplish different tasks to survive (finding

food and finding water).

In Cangelosi et al.’s simulation both the network architecture and the network’s connection weights

are genetically inherited and they evolve at the population level. The particular experience of the

individual in its environment has no role in determining the individual’s phenotype. It is true that

the individual develops, in that the adult neural network is the result of a succession of

developmental stages (the displacements of the network’s units in bidimensional space and the

process of axonal growth), but those changes should be called maturation rather than development

since the environment and the individual’s experience has no role in determining them. Rather, it is

evolution that selects, at the population level, the most appropriate maturational sequence.

In the next section we describe another simulation in which evolution and individual learning

during life both contribute in shaping the individual’s phenotype. More specifically, evolution
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creates modular architectures as the most appropriate ones for the particular task the individual

faces during life and learning identifies the connection weights for these architectures.

3.2 Evolution and learning in the emergence of modular architectures

In 1982 Ungerleider and Mishkin (1982) proposed the existence in primates of two visual cortical

pathways, the occipito-temporal ventral pathway and the occipito-parietal dorsal pathway, which

were respectively involved in the recognition of the identity ("What") and location ("Where") of

objects (see Figure 2). (More recently, what was interpreted as the representation of the location of

an object has been reinterpreted as representing what the organism has to do with respect to the

object (“How”). Cf. Milner & Goodale, 1995.)

This work has been very influential both in neuroscience and cognitive science and in 1989 Rueckl,

Cave and Kosslyn (1989) used a neural network model for exploring the computational properties

of this "two-systems" design. In their model, neural networks with different fixed architectures were

trained in the What and Where task by using the back-propagation procedure (Rumelhart and

McClelland, 1986) and their performances were compared. The results of the simulations show that

modular architectures perform better than nonmodular ones and they construct a better internal

representation of the task.

One way of explaining the better results obtained with the What and Where task with modular

networks than with nonmodular ones is to point out that in nonmodular architectures one and the

same connection weight may be involved in two or more tasks. But in these circumstances one task

may require that the connection weight’s value be increased whereas the other task may require that

it be decreased (see Figure 4, left). This conflict may affect the neural network’s performance by

giving rise to a sort of neural interference. On the contrary, in modular architectures modules are
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sets of “proprietary” connections that are only used to accomplish a single task and therefore the

problem of neural interference does not arise (see Figure 4, right). Rueckl et al. (1989) hypothesize

that this might be one of the reasons for the evolutionary emergence of the two distinct neural

pathways in real organisms.

To test this hypothesis Di Ferdinando, Calabretta, and Parisi (2001) repeated the experiment of

Rueckl et al. (1989) by allowing the evolution of the network architecture. In Rueckl et al.’s

simulations the network architectures are hardwired by the researcher and the authors are able to

find the best possible architecture (which is a modular architecture with more hidden units assigned

to the more difficult What task and fewer hidden units assigned to the easier Where task) by trying

many different hardwired architectures and testing them. Jacobs and Jordan (1992) have used a

developmental model in which the network architecture emerges as a result of a process of

development in the individual. The individual network starts as a set of units each placed in a

particular location of a bidimensional physical space and then pairs of units may establish

connections based on a principle of “short connections” according to which two units are more

likely to become connected the more close they are in space. This is an interesting proposal based

on a principle that favors short connections which is likely to play a role in neural development.

However, the resulting network architecture is not really self-organizing because it is the researcher

who decide the location of units in physical space and therefore in a sense hardwire the network

architecture. (In the simulations described in Section 3.1 there is also development of the

connectivity pattern as in Jacobs and Jordan’s simulations but both the location of the network’s

units in space and the rules controlling the growth of connections are genetically inherited and they

are the result of a self-organizing evolutionary process.) In the simulations described in this Section,

although there is no development, the network architectures are the spontaneous outcome of a

process of evolution which is independent from the researcher.
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Figure 4. Neural interference in neural networks that have to learn to perform two tasks. Consider in the non-modular

architecture (left) the highlighted connection that connects one of the input units with one of the hidden units. Since the

hidden unit sends its connections (highlighted) to both the output units involved in task 1 and those involved in task 2, a

modification of the connection's weight value would affect both tasks. In this kind of architecture neural interference

may arise because optimization of one task may require that this connection's weight value be increased whereas

optimization of the other task may require that it be decreased. In the modular architecture (right) the problem of neural

interference does not arise because the connection goes to a hidden unit which sends its connections (highlighted) only

to the output units involved in task 2 and therefore its value can be changed to satisfy the requirements of task 2 only.

In a first set of simulations Di Ferdinando et al. (2001) used a genetic algorithm for evolving both

the architecture and the connection weights of the neural networks. The results showed that the

genetic algorithm was unable to evolve both the architecture and  the weights. Furthermore, the

network architecture that tended to evolve was different from the best architecture of Rueckl et al.

in that it assigned more resources (hidden units) to the easier Where task than to the mode difficult

What task. In other words, the evolutionary algorithm was not able to allocate the appropriate

resources to the two tasks.
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The failure of the genetic algorithm to find the best architecture for the What and Where task and

therefore to reach appropriate levels of performance when both the network architecture and the

connection weight are genetically inherited appears to be due not only to the fact that a mutation

affecting the architecture can suddenly make a set of weights evolved for the preceding architecture

inappropriate for the new architecture but also to a phenomenon analogous to genetic linkage. In

simulations in which the architecture is fixed and is the best modular architecture (more units

allocated to the What task compared to the Where task), the genetic algorithm appears to be unable

to evolve the appropriate connection weights because a favorable mutation falling on the weights of

one module can be accompanied by an unfavorable mutation in the weights of the other module.

This interference at the genetic level appears to be unexpected according to models of population

genetics (Wagner, personal communication).

Further analyses of the simulation results reveal other interesting phenomena that are due to the co-

evolution of architecture and weights, for example freezing of the architecture at low mutation rates

and oscillation of the evolved architecture at high rates.

The best results - i.e., the appropriate modular architecture and high levels of performance - are

obtained in simulations in which evolution cooperates with learning. More specifically, the best

solution, as suggested by Elman et al. (1996), is to have evolution take care of the architecture and

learning of the connection weights. With this solution evolution is free to zero in on the best

network architectures without fear that inherited weights that were appropriate for previous

architectures may turn out to be inappropriate for mutated architectures (genetic linkage) and

learning during life is free to find out the best connection weights for each inherited architecture.

These simulation results clearly show that evolution and learning are not dichotomous as

empiricists and nativists sometimes seem to be believe but that their cooperation is necessary if

organisms must be able to acquire complex capacities.
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As a final observation we note that, as in the simulations described in the previous Section, the

evolved neural modules are not completely isolated and the modular architecture is not as clean as a

“boxes-and-arrows” model. While most connections are proprietary of the two modules, the What

module and the Where module, there are some connections that are shared by the two modules.

6 Conclusions

In this chapter we have described a new approach to studying brain/mind modularity which takes

into consideration the phylogenetic history of an organism’s brain modules. This approach,

Artificial Life, allows us to simulate in the same model an organism at the genetic, neural, and

behavioral level and may helps us in revealing how modules at one level may be related to modules

at another level.

Brain/mind modularity is a contentious issue in current cognitive science. Cognitivists tend to

conceive the mind as a set of distinct specialized modules and they believe that this rich modularity

is basically innate, with evolutionary psychologists even thinking that each module is adaptive in

that it has been biologically selected as a result of specific evolutionary pressures. (But other

cognitivists, such as Chomsky and Fodor, believe that modules are innate but not necessarily

adaptive (Fodor, 2000).) On the other hand, connectionists tend to think that the mind is a more

homogeneous system that basically genetically inherits only a general capacity to learn from

experience and that if there are modules they are the result of development and learning rather than

being innate.
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We have maintained that connectionism is not necessarily anti-modularist and anti-innatist. On the

contrary, since neural network models are said to be inspired by the brain they cannot but be

modular (if even most network architectures used in connectionist simulations are nonmodular)

because the brain is a rich structure of specialized modules. Viewing neural networks in the

perspective of Artificial Life allows us to develop an appropriately modular and innatist

connectionism, Evolutionary Connectionism. Artificial Life simulations simulate evolving

populations of organisms that inherit a genotype from their parents which together with experience

and learning determines the individual phenotype. The way is open then for simulations that explore

whether modular or nonmodular network architectures emerge for particular tasks and how

evolution and learning can cooperate to shape the individual phenotype.

In any case, even if connectionism can be modularistic, this does not imply that when

connectionists talk about modules they mean the same thing as cognitivists. Cognitive modules are

theoretical entities which are postulated in “boxes-and-arrows” models used to explain behavioral

data. Connectionist modules are anatomically separated and/or functionally specialized parts of the

brain. There may be only partial co-extensiveness between the two types of modules and in any

case research on neural modules is very differently orientated than research on cognitive modules

and it considers different types of empirical evidence.

Evolutionary Connectionism shares the main goal of Evolutionary Psychology, that is, to develop a

“psychology informed by the fact that the inherited architecture of human mind is the product of the

evolutionary process” (Barkow et al., 1992), but it differs from Evolutionary Psychology for three

main reasons: (1) it uses neural networks rather than cognitive models for interpreting human

behavior; (2) it adopts computer simulations for testing evolutionary scenarios; (3) it has a less pan-

adaptivistic view of evolution and it is more interested in the rich interplay between genetically

inherited and experiential information. The simulation of evolutionary scenarios allows us to take
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chance and other nonadaptive evolutionary factors into consideration and therefore prevents us from

explaining all the morphological or functional characteristics of organisms in exclusively

adaptivistic terms.

We have presented two Artificial Life simulations in which the genetic algorithm actually selects

for modular architectures for neural networks. In one simulation both the network architecture and

the network weights are genetically inherited and they evolve but evolution selects for appropriate

maturational sequences and in the other simulation evolution and learning cooperate in that

evolution selects for the network architecture and learning finds the weights appropriate for the

inherited architecture. These simulations weaken Marcus’ criticism when he says that “ none of […

connectionist] models learn to divide themselves into new modules” (Marcus, 1998, p. 163).

The first of the two simulations described in this chapter also shows that modules can be inherited

(innate) but their exact structure is not necessarily the result of specific evolutionary pressures and

adaptive but it can be the result of other evolutionary forces such as chance and pre-adaptation.

More Artificial Life simulations are of course needed to explore how modular architectures evolve

or develop during life and how selective pressures at the population level or experience during life

may shape the existing modules. But the Artificial Life perspective allows us to explore other

research directions that involve the interactions of modules at the genetic, neural, and behavioral

level (Calabretta et al., 1998). For example, using neural networks in an Artificial Life perspective

one can explore if genetic duplication would facilitate the evolution of specialized modules. This

would represent an important confirmation of the general hypothesis that gene duplication

facilitates the evolution of functional specialization which was originally proposed by Ohno (1970)

and modified by Hughes (1994). We have already shown with Artificial Life simulations that this

might actually be the case (Calabretta et al., 2000; Wagner et al., this volume). Another research
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direction would be testing whether sexual reproduction might decrease the kind of genetic

interference (linkage) postulated by Di Ferdinando et al. (2001) and this would strengthen one of

the several hypotheses formulated about the role of sexual reproduction in evolution (Michod &

Levin, 1988).
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