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308 Modularity of Mind and Culture

computation and biology: adaptation and evolution can work effectively only if
variations are not too often very disruptive and not too rarely favorable. By acting
on the representation, one can make simple adaptive mechanisms such as mutation
and recombination either very effective or totally ineffective. Modularity and near
decomposability, they show, can be a way to solve the representation problem.

In the final chapter, Kimbrough Oller raises the issue of the logical distinction
between thought and language in the context of the discussion of modularity.
Extrapolating from his earlier work on the emergence of the speech capacity, his
fundamental contention is that a natural logic of (potential) communicative systems
is a critical domain for the understanding of language structure (cf. Rasskin-
Gutman'’s discussion of “theoretical morphospace” in chapter 9). Oller presents
natural logic as a “third way” beyond the nature-nurture dichotomy. It includes a
series of distinctions that constitute modular elements of communicative capability.
Infrastructural natural logic, in his view, offers the opportunity to (1) understand at
a very general level how language is structured in the mind in terms of modules of
function; (2) relate the mature structure of language to its primitive beginnings in
the human infant; (3) compare the nature of human vocal communication with that
of extant nonhumans; (4) provide the basis for fruitful speculations about the
evolution of language in our species; and (5) lay the groundwork for a theory of
possible communicative evolution in any species: human, nonhuman, or—even
more daringly—extraterrestrial.
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1 4 Evolutionary Connectionism and Mind/Brain Modularity

Raffaele Calabretta and Domenico Parisi

Connectionism Is Not Necessarily Antimodularist or Antinativist

In a very general and abstract sense modular systems can be defined as systems
made up of structurally and/or functionally distinct parts. While nonmodular
systems are internally homogeneous, modular systems are segmented into modules
(i.e., portions of a system having a structure and/or function different from the struc-
ture or function of other portions of the system). Modular systems can be found at
many different levels in the organization of organisms (for example, at the genetic,
neural, and behavioral/cognitive levels). An important research question is how
modules at one level are related to modules at another level.

In cognitive science, the interdisciplinary research field that studies the human
mind, modularity is a very contentious issue. There exist two kinds of cognitive
science, computational cognitive science and neural cognitive science. Computa-
tional cognitive science is the more ancient theoretical paradigm. It is based on an
analogy between the mind and computer software, and it views mind as symbol
manipulation taking place in a computational system (Newell and Simon, 1976).
More recently a different kind of cognitive science, connectionism, has arisen, which
rejects the mind/computer analogy and interprets behavior and cognitive capacities
using theoretical models which are directly inspired by the physical structure and
way of functioning of the nervous system. These models are called neural net-
works—Ilarge sets of neuronlike units interacting locally through connections
resembling synapses between neurons. For connectionism, mind is not symbol
manipulation. Mind is not a computational system, but the global result of the many
interactions taking place in a network of neurons modeled with an artificial neural
network. It consists entirely of quantitative processes in which physicochemical
causes produce physicochemical effects. This new type of cognitive science can be
called neural cognitive science (Rumelhart and McClelland, 1986).

Computational cognitive science tends to be strongly modularistic. The compu-
tational mind is made up of distinct modules which specialize in processing distinct
types of information, have specialized functions, and are closed to interference from
other types of information and functions (Fodor, 1983). Computational cognitive
models are schematized as “boxes-and-arrows” diagrams (for an example, see figure
14.1). Each box is a module with a specific function. The arrows connecting boxes
indicate that information processed by some particular module is then passed on to
another module for further processing. In contrast, connectionism tends to be anti-
modularistic. In neural networks information is represented by distributed patterns
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An example of a “boxes-and-arrows” model: the dual-route model for the English past tense (Pinker
and Prince, 1988). “The model involves a symbolic regular route that is insensitive to the phonological
form of the stem and a route for exceptions that is capable of blocking the output from the regular route”
(modified from Plunkett, 1996).

of activation in potentially large sets of units, and neural networks function by trans-
forming activation patterns into other activation patterns through the connection
weights linking the network’s units. Most neural network models are not divided
into any kind of modules except for the distinction between input units, output units,
and one or more layers of intermediate (hidden or internal) units (for an example,
see figure 14.4).

One cannot really understand the contrast between modularism and antimodu-
larism in cognitive science, however, if one does not consider another contrast: that
between computational cognitive science (cognitivism) and neural cognitive science
(connectionism). This is the contrast between innatism and anti-innatism. Cogni-
tivists tend to be nativists. Modules are assumed to be specified in the inherited
genetic endowment of the species and of each individual. For evolutionary psy-
chologists, who tend to be cognitivists, the modular structure of the mind is the result
of evolutionary pressures. Evolutionary psychologists are convinced that it is possi-
ble to identify the particular evolutionary pressures behind each module. Hence,
evolutionary psychologists (Cosmides and Tooby, 1994) embrace a strong form of
adaptationism. They not only think that modules are already there in the genetic
material; they think that modules are in the genes because in the evolutionary past
individuals with a particular module in their genes generated more offspring than
individuals without that module.
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This panadaptationism is not shared by all cognitivists, however. For example, the
linguist Noam Chomsky believes that the mind is computational and that there is a
specific mental module specialized for language (or syntax); but he does not believe
that language in humans has emerged under some specific evolutionary pressure
(cf. Fodor, 2000). As some evolutionary biologists, in particular Gould (1997),
have repeatedly stressed, what is genetically inherited is not necessarily the result
of specific evolutionary pressures. Nor is it necessarily adaptive: it can also be the
result of chance, it can be the adaptively neutral accompaniment of some other
adaptive trait, or it can be an exaptation, the use for some new function of a trait
which has evolved for another function (Gould and Vrba, 1982). More recently, the
contrast between Steven Pinker and Jerry Fodor, who are both well-known cog-
nivists and nativists, has revealed how the adaptive nature of inherited traits can
divide computational cognitive scientists. Pinker (1999) has argued for a strong form
of adaptive modularism, while Fodor is in favor of a strong form of nonadaptive
modularism (Fodor, 1998).

In contrast to cognitivists, connectionists tend to be antinativists. Connectionism
is generally associated with an empiricist position that considers all of the mind to
be the result of learning and experience during life. What is genetically inherited,
in humans, is only a general ability to learn. This general ability to learn, when it
is applied to various areas of experience, produces the diverse set of capacities
exhibited by humans.

The matter is further complicated if one considers development. Development is
the mapping of the genetic information onto the adult phenotype. This mapping is
not instantaneous but is a process that takes time to complete. In fact, development
consists of a temporal succession of phenotypical forms. When one recognizes that
the genotype/phenotype mapping is a temporal process, the door is opened for
learning and experience to influence the phenotype. Therefore, cognitivists tend to
be not only nativists but also antidevelopmentalists.

Cognitivist developmental psychologists (e.g., Spelke et al., 1994; Wynn, 1992)
tend to think that modules are already there in the phenotype from the first stages
of development, and that there is not much of real importance that actually changes
during life. Furthermore, as nativists, they think that even if something changes
during development, this is due not to learning and experience but to some tem-
poral scheduling encoded in the genetically inherited information, like sexual matu-
rity, which is not present at birth but is genetically scheduled to emerge at some
later time during life.

Developmental psychologists, on the contrary, who are closer to connectionism
(e.g., Karmiloff-Smith, 2000) tend to think that modules are not present in the
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phenotype from birth (in newborns or infants), but develop later in life. Further-
more, they believe that modules are only very partially encoded in the genotype,
and are the result of complex interactions between genetically encoded information
and learning and experience.

In the present chapter we want to argue for a form of connectionism that is
neither antimodularist nor antinativist. Connectionism is not necessarily anti-
nativist. Even if many neural network simulations use some form of learning algo-
rithm to find the connection weights that make it possible for a neural network to
accomplish some particular task, connectionism is perfectly compatible with the
recognition that some aspects of a neural network are not the result of learning but
are genetically inherited. For example, since most simulations start from a fixed
neural network architecture, one could argue that this network architecture is
genetically given, and that the role of learning is restricted to finding the appropri-
ate weights for the architecture.

In fact, Elman et al. (1996) have argued that connectionist networks allow the
researcher to go beyond cognitivism (which simply affirms that this or that is
innate), and explore in detail what can be innate and what can be learned by
showing how phenotypical capacities can result from an interaction between what
is innate and what is learned. These authors distinguish among different things that
can be innate in a neural network: the connection weights (and therefore the neural
representations as patterns of activation across sets of network units), architectural
constraints (at various levels: unit, local, and global), and chronotopic constraints
(which determine when things happen during development).

One could also add that the connection weights may be learned during life, but
that there may be genetically inherited constraints on them. For example, their
maximum value or “sign” (for excitatory or inhibitory connections) may be genet-
ically specified, or the genotype may encode the value of learning parameters such
as the learning rate and momentum (Belew et al., 1992). As we will show later in
this chapter, modularity can emerge in neural networks as a function of genetically
inherited architectural constraints and chronotopic constraints.

However, to argue that something is innate in a neural network, it is not suffi-
cient that some of the properties of the neural network are hardwired by the
researcher in the neural network; it is necessary to actually simulate the evolution-
ary process that results in these genetically inherited properties or constraints. Arti-
ficial life simulations differ from the usual connectionist simulations in that artificial
life uses genetic algorithms (Holland, 1992) to simulate the evolutionary process

and to evolve the genetically inherited properties of neural networks (Parisi et al.,
1990; Calabretta et al., 1996).
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Unlike traditional connectionist simulations, artificial life simulations involve not
an individual network that on the basis of its individual experience learns some
particular capacity, but an entire population of neural networks made up of a suc-
cession of generations of individuals, each of which is born with a genotype inher-
ited from its parents. Using a genetic algorithm, the simulation shows how the
information encoded in the inherited genotypes changes across the successive gen-
erations because reproduction is selective and new variants of genotypes are con-
stantly added to the genetic pool of the population through mutations and sexual
recombination. At the end of the simulation the inherited genotypes can be shown
to encode the desired neural network properties that represent innate constraints
on development and behavior. We call this type of connectionism “evolutionary
connectionism.” .

We can summarize the three options that are currently available to study the
behavior of organisms with table 14.1. '

Evolutionary connectionist simulations not only allow us to study how genetically
inherited information can spontaneously emerge in populations of neural networks,
instead of being arbitrarily hardwired in the neural networks by the resea'rcher, but
also make it possible to explore all sorts of interactions between evc?lunon at the
population level and learning at the level of the individual that determine the actual
phenotype. .

In this chapter we describe two evolutionary connectionist simulations that show
how modular architectures can emerge in evolving populations of neural networks.
In the first simulation, every network property is genetically inherited (i.e., both the

Table 14.1 . '
Three options for studying behavior and mind
Computational cognitive Mind as symbol ) Nativist Modularist
science or Cognitivism manipulation taking

place in a computerlike

system .
Neural cognitive science or Mind as the global result  Anti-nativist Anti-modularist
Connectionism of the many

physicochemical

interactions taking place

in a network of neurons

Evolutionary connectionism  Mind as the global result lntera?tion between Modularist

of the many evolution and learning
physicochemical

interactions taking place

in a network of neurons
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network architecture and the connection weights are inherited) and modular archi-
tectures result from genetically inherited chronotopic constraints and growing
instructions for units’ axons. In the second simulation, the network architecture is
genetically inherited but the connection weights are learned during life. Therefore,
adaptation is the result of an interaction between what is innate and what is learned.

Cognitive versus Neural Modules

Neural networks are theoretical models explicitly inspired by the physical structure
and way of functioning of the nervous system. Therefore, given the highly modular
structure of the nervous system, it is surprising that so many neural network archi-
tectures that are used in connectionist simulations have internally homogeneous
architectures and do not contain separate modules. Brains are not internally homo-
geneous systems but are made up of anatomically distinct parts, and distinct por-
tions of the brain are clearly more involved in some functions than in others. Since
it is very plausible that human brains are able to exhibit so many complex capaci-
ties not only because they are made up of 100 billion neurons but also because these
100 billion neurons are organized as a richly modular system, future connectionist
research should be aimed at reproducing the rich modular organization of the brain
in neural networks.

However, even if, as we will show by the two simulations described in this chapter,
connectionist simulations can address the problem of the evolution of modular
network architectures, it is important to keep in mind that the notion of a module
is very different for cognitivists and for connectionists. Cognitivistic modularism is
different from neural modularism.

For cognitivists, modules tend to be components of theories in terms of which
empirical phenomena are interpreted and accounted for. A théory or model of some
particular phenomenon hypothesizes the existence of separate modules with dif-
ferent structures and/or functions which, by working together, explain the phe-
nomenon of interest. Therefore, cognitivist modules are postulated rather than
observed entities. For example, in formal linguistics of the Chomskyan variety, syntax
is considered as an autonomous module of linguistic competence in that empirical
linguistic data (the linguistic judgments of the native speaker) are interpreted as
requiring this assumption. Or, in psycholinguistics, the observed linguistic behavior
of adults and children is interpreted as requiring two distinct modules, one sup-
porting the ability to produce the past tense of regular English verbs (e.g., worked)
and the second one underlying the ability to produce the past tense of irregular
verbs (e.g., brought) (Pinker and Prince, 1988; see figure 14.1). This purely theoreti-
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interconnected subsystems such as the retina-geniculate-visual cortex for vision or
the basal ganglia-frontal cortex subsystem for attention. This rich modularity of the
brain, both structural (anatomical and cytoarchitectonic) and functional (physio-
logical), is evidenced by direct (instrumental) observation, by data on localization
of lesions in various behavioral/mental pathologies and on neuropsychological dis-
sociations, and more recently and increasingly, by neuroimaging data.

One can look for correspondences between the two types of modules, the theo-
retical modules of computational cognitive science and the observed “modules” of
the brain. This is what cognitive neuropsychologists are supposed to do. They inter-
pret the behavioral deficits of patients using the “box-and-arrows” theoretical
models of cognitive psychology, where boxes are modules and arrows indicate the
relationship between modules (see figure 14.1), and then they try to match this
modular analysis with observations and measurements on localization of lesions and
other physical data on patients’ brain. However, one cannot assume that the
modular theoretical models of computational cognitive science necessarily corre-
spond to the observed modular structure and functioning of the brain. Cognitive
modules may not match the physical (neural) structural or functional “modules” of
the bfain, and the brain can be organized into distinct “modules” which do not trans-
late-into-distinet components of the theoretical models in terms of which psychol-
ogists and cognitive scientists interpret and explain behavioral data.

This is particularly important to keep in mind when one turns to an alternative
type of theoretical models which can be used to interpret and explain behavioral
data and cognitive capacities: neural networks. Neural networks are theoretical
models which, unlike the theoretical models of cognitivist psychology and compu-
tational cognitive science, are directly inspired by the brain’s physical structure and
way of functioning. Hence, neural networks are atthe same time models of the brain
and models-of the mind. The neural networks used in most simulations so far have
been nonmodular. They are a homogeneous network of units with minimal struc-
ture constituted by an input module (i.e., set of units), an output module, and (almost
always) a single internal module in between.

However, this should be a considered as a limitation of current neural network
models, not as an intrinsic property of these models. If neural networks are claimed
to be inspired by the structure and functioning of the brain, they must be modular
because the brain is modular. Notice, however, that the modules of neural networks
will be more similar to the modules of the brain than to the theoretical “boxes” of
the “boxes-and-arrows” models of computational cognitive science. A module
in a modular neural network is a (simulated) physical module, not a postulated
theoretical construct. A neural module can be a subset of network units with

T
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more internal connections linking the units of the module. among then.lselv:s
than external connections linking the units of the module with units outside the
mo(g:l:r;ore functionally, a neural network module' can bﬁ an obsgrvid‘ C(;rrélatedf
activity of a subset of the network’s units, even without anatomlc‘al iso a.tlo: 1(;
that subset of units. If the modular structure of a neural network is hardwire );
the researcher, the researcher should be inspired by the actual modt*lflr structulre ;)
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more in the spirit of neural cognitive science, the. network architecture 15 r;ot a; -
wired by the researcher but is a result of evol}n.lon,.developmer?t, and/or leantu 8,
the researcher should be interested in ascertaining if the emerging modular struc-
e actual modularity of the brain. . o
ml:sn\l:e:cl:‘::et:aid, connectionist rZsearch tends to be Fqnsidered antimodularist, in
contrast to the strongly modular cognitive models."lhls is fac?ua!ly Cf)rrect .because
most neural network architectures actually used in connectionist simulations arei
nonmodular and because connectionism tends.to un_dersc.ore the r_ole of’dgelner.an
learning mechanisms rather than that of genetically inherited specnﬁc ml n:t:so :k
shaping the behavior of organisms. However, as we have also said, neufra o
research need not be antimodularist and need not downplay the role of gene dl y
inherited information. The real contrast between neural network models anOdC(;g-
nitive models does not concern modularity in itself, but rathf:r the nature.of bn; ° ul :
and the question of what theoretical models are approprate o explain avi
ion.
andcgzztcli:r the cognitivist hypothesis that English speakers produce the pas.t tense-
of verbs using two distinct modules, one for regular verbs and the other for u::gil:-
lar verbs (Pinker and Prince, 1988; see figure 14'.1)..There e_lppears to be some € f;:h .
ical evidence that these two modules might reside in physncz.xlly separate: parts :))d
brain. Patients with lesions in the anterior portion of the b.ram tend to fail to pr fo;:z
regular past-tense forms while their abil.ity to Produc.e 1rrf3gular pastt-t?::e orms
appears to be preserved. In contrast, patients with lesxo.ns in the pos e:d pgne :
of the brain tend to show the opposite pattern. They find it difficult tq produce ‘11 'cafe
ular past tenses, whereas they are able to producc? regular ones. This m_ay n}niis c
that two distinct neural modules actually underlie past-tens.e productlon.t'onism
completely acceptable for a connectionist (at least ff)r the van.ety loft cotx;lrexel():e 1haVi0r
represented by the authors of this chapt.er), who will try to simu a'fh B e et
of producing the past tensc of verbs using a t'nodular network wi e
modules, one for regular verbs and another for irregular verbs. (These two
could be either structural or functional, in the sense defined above.)
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What di§tinguishes the cognitive and the neural approaches to the treatment of
past tens‘e is the nature of the modules. Cognitivists claim that the regular past-tense
mo<.iu!e is a rule-based module. When producing the past of the verb to work tl;c
brain is applying the rule “Add the suffix -ed to the verb root.” In contrast, the ir,re -
ular past-tense module is an association-based module containing a finite l,ist of vergb
r.oots, each associated with its irregular past-tense form. The brain just consults this
list of associations, finds the appropriate verb root (for example, bring), and pr
duce§ the corresponding past-tense form (brought). ’ o P
- Tl‘us t.heoretical interpretation of past-tense behavior is rejected by a connec-
tionist simply because his or her theoretical tools (i.e., neural network models) d
not allo.w for this interpretation. Neural network models are inspired by the brai:
and brains are physical systems made up of physical entities and processes in which’
all th?t can ever happen is the production of physicochemical effects by physico-
chemlcal. causes. Hence, in principle a neural network cannot appeal to a ruleyas an
explanation of any type of behavior and cogpnitive ability. A connectionist can accept
that separate and distinct portions of the brain, and of the neural network that sir:
ulates the brain, may be responsible for the production of regular and of irregul :
past-teqse forms. However, both neural modules must function in the same i:s?cr:
way: umt.s are activated by excitations and inhibitions arriving from other connected
units. ThlS does not rule out the possibility that one can discover differences in the
f)rganlzatlon and functioning of the two different neural modules for regular and
irregular Eflglish verbs, and of course this requires an explanation of whygthe brain

has found it useful to have two separate modules for controlling verb past-tense

behavior instead than onl i i
y one. This poses the question of the origin of
. . m
which we turn in the next section. * odules o

Evolutionary Connectionist Simulations: An E i
3 volutionary and Devel
Approach to the Study of Neural Modularity " eelopmentat

In this section we describe two evolutionary connectionist simulations in which
modular fletwork architectures evolve spontaneously in populations of biologicall

rc?producmg neural networks. The two simulations address only some of thegma g
dlff.erent problems and phenomena that may arise as a result of the complex intenr)-l
actlon.s between the adaptive process at the population level (evolution) and th

adaptlYe process at the individual level (learning) and that may be studied usi .
evolutionary connectionist simulations. In the first simulation a modular arcllllibt::::g-
ture emerges as part of a process of development taking place during the life of the
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individual which is shaped by evolution, but does not take experiential and envi-
ronmental factors during development into consideration. Furthermore, the con-
nection weights for this network architecture are also genetically inherited. In the
second simulation, evolution actually interacts with learning because the network
architecture evolves and is genetically inherited while the connection weights for
this architecture are learned during life. (For other simulations on the evolution of
modular network architectures, see Murre, 1992 )

Evolution and Maturation of Modules

Cecconi and Parisi (1993) have described some simulations of organisms which live
in an environment containing food and water and which, to survive, have to ingest
food when they are hungry and water when they are thirsty. The behavior of these
organisms is influenced not only by the external environment (the current location
of food and water) but also by the motivational state of the organism (hunger or
thirst) which is currently driving its behavior. The body is hungry until a given
number of food elements have been eaten, and then it becomes thirsty; similarly,
thirst becomes hunger after a given number of water elements have been drunk. At
any given time the motivational state of the organism is encoded in a special set of
“motivational” units representing an internal input (coming from inside the body)
which, together with the external input encoding sensory information about the
location of food and water, sends activation to the network’s hidden units and there-
fore determines the network’s output. The network’s output encodes the displace-
ments of the organism in the environment to reach food or water.

In Cecconi and Parisi's simulations the network architecture is fixed, hardwired
by the researcher, and nonmodular. By using a genetic algorithm for evolving the
connection weights, the authors demonstrate that the organisms evolve the appro-
priate weights for the connections linking the motivational units to the hidden units
in such a way that the current motivational state appropriately controls the organ-
isms’ behavior. When the organisms are hungry, they look for food and ignore water.
When they are thirsty, they look for water and ignore food.

But what happens if, instead of hardwiring it, we try to evolve the architecture by
means of a genetic algorithm? Is the evolved architecture modular or nonmodular?

To answer this question, Cangelosi et al. (1994) added a model of neural devel-
opment to the simulation of Cecconi and Parisi (1993). In the new model the
network architecture, instead of being hardwired by the researcher, is the eventual
result of a process of cell division and migration, and of axonal growth and branch-
ing which takes place during the life of the individual organism. Unlike most simu-
lations using genetic algorithms to evolve the architecture of neural networks (Yao,
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1993), in Cangelosi et al’s model the genotype does not directly encode the con-
nectivity pattern of the network. What is specified in the genotype is the initial
spatial location (in bidimensional space) of a set of simulated neurons (network
units), the rules that control the migration of each neuron within the bidimensional
space, and the growth parameters of each neuron’s axon after the neuron has
reached its final location.

When a new individual is born, a process of neural development takes place. First,
each of the individual’s neurons is placed in the bidimensional space of the nervous
system according to the x and y coordinates specified in the genotype for that
neuron. Second, each neuron displaces itself in neural space according to other
genetically specified information until it reaches its final location. Third, after reach-
ing its final location, the neuron grows its axon according to growth instructions (ori-
entation and length of axonal branches), also specified in the genotype. When the
axonal branch of a neuron reaches another neuron, a connection between the two
neurons is established and is given a connection weight which is also specified in
the genotype.

A genetic algorithm controls the evolution of the population of organisms. Start-
ing from an initial population with randomly generated genotypes, the best indi-
viduals (i.e., those that are best able to eat when hungry and drink when thirsty)
are selected for reproduction and the offspring’s genotypes are slightly modified by
some random genetic mutations. The result is that after a certain number of gener-
ations the organisms are able to reach for food when they are hungry, while ignor-
ing water, and to reach for water when they are thirsty, while ignoring food.

Notice that in the genotype neurons are not specified as being input neurons,
output neurons, or hidden neurons. The total bidimensional space of the brain is
divided into three areas: a lower area that will contain input units (both external
sensory units and internal motivational units), an intermediate area that will contain
hidden units, and a higher area that will contain motor output units. If during devel-
opment a neuron ends up in one of these three areas, it takes the function (input,
hidden, or output) specified by the area.

Furthermore, if a neuron ends up in the input area, it can be either a sensory
neuron encoding environmental information on location of food and water or a
motivational neuron encoding internal (bodily) information on whether the organ-
ism needs food (is hungry) or water (is thirsty). Individual organisms can be born
with a variety of defective neural networks (no input units for food or water or for
hunger/thirst, no motor output units, no appropriate connectivity pattern), but these
individuals do not have offspring and their defective genotypes are eliminated from
the population’s genetic pool.
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What network architectures emerge evolutionarily? Are they modular? .

Evolved network architectures contain two distinct nf:ural path\\-/a?‘/s or moSules.
one for food and the other for water. When the motivational §tate is lTunge:r, .only
some of the hidden units have activation states that vary wx?h variations in input
information about food location; variations in input informat!ox) about water loca-
tion do not affect these hidden units (see figure 14.3, left?. Thx§ is the fopd modultla.
Conversely, when the motivational state is “thirs.t," wat.er mput. mforr.n.atnon controls
the activation level of the remaining hidden units, which are insensitive to' sensory
information about food. This is the water module. All successful archxtecturecsl
contain motivational units that send their connections to both the food n?odule an |
the water module and, on the basis of their activation (hunger or thirst), give contro

ism’s behavior to either food or water. .

Of’;:?sosrﬁzr\::"tlhat—unlike the network architecture hard\yired by Cecconi and
Parisi (1993), which was nonmodular—if we al.low evolution to sele<':1th the bes:
adapted network architectures, the evolved architectures are mod%xlar. boetneu::r
network prefers to elaborate information about food and information about wa

in dedicated subnetworks that we can call modules.

Output

input

water motivation food

water motivation food tood,

angle angle angle

Figure 143 .
Food pathway and water pathway are shown in bol
from Cangelosi et al., 1994.)

1d on the left and right side, respectively. (Modified
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However, as real brain modules as contrasted with cognitive “boxes-and-arrows”
models and even hardwired modular architectures, evolved neural modules are not
completely isolated or insulated modules. In the evolved architectures of Cangelosi
et al,, the water pathway includes some units which are specialized for processing
information about water and some units which are also used to process information
about food. In other words, while information about water is blocked by the
network’s connection weights when the organism is hungry and it is trying to
approach food, information about food has some role even when the organism is
thirsty and it is trying to approach water (see figure 14.3, right). Interestingly, the
asymmetry between the two neural pathways or modules appears to be related to
the history of the evolution of the abilities to find food and to find water, since the
ability to find food begins to emerge evolutionarily in this population earlier than
the ability to find water.

The fact that the water module includes some units that are also part of the food
module, together with the historically contingent fact that the food module emerges
earlier than the water module, demonstrates the role of historical contingency in
evolved systems. Since for chance reasons the water pathway emerges evolutionar-
ily after the food pathway (i.e., some generations later), the evolutionary process
must take what has already evolved into consideration. As a consequence, some of
the hidden units dedicated to processing food-related sensory information will end
up among the hidden units dedicated to processing water-related information.

The lesson that can be derived from this result is that it can in some cases be erro-
neous to explain the morphological or functional characteristics of organisms in
exclusively adaptationist terms (as evolutionary psychologists tend to do; see
Barkow et al., 1992; Buss, 1999). As suggested by Gould and others (see Gould and
Lewontin, 1979), evolutionary reality is more complex, and some evolved charac-
teristics can be just the by-products of other, directly selected, characteristics or be
the result of chance. Artificial life simulations can help us demonstrate these
different mechanisms and processes that result in the evolutionary emergence of
organismic characteristics.

The results obtained with these very simple simulations demonstrate how evolv-
ing the network architectures, instead of hardwiring (i.e., postulating) them, might
have important consequences for the study of neural modularity in organisms that
must accomplish different tasks to survive (finding food and finding water).

In Cangelosi et al.’s simulation both the network architecture and the network’s
connection weights are genetically inherited, and they evolve at the population
level. The particular experience of the individual in its environment has no role in
determining the individual’s phenotype. It is true that the individual develops, in
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that the adult neural network is the result of a succession of developmental stages
(the displacements of the network’s units in bidimensional space and the process of
axonal growth), but those changes should be called maturation rather than devel-
opment because the environment and the individual’s experience have no role in
determining them. Rather, it is evolution that selects, at the population level, the
most appropriate maturational sequence.

In the next section we describe another simulation in which evolution and indi-
vidual learning during life both contribute to shaping the individual’s phenotype.
More specifically, evolution creates modular architectures as the most appropriate
ones for the particular tasks the individual faces during life, and learning identifies
the connection weights for these architectures.

Evolution and Learning in the Emergence of Modular Architectures

Ungerleider and Mishkin (1982) proposed the existence in primates of two visual
cortical pathways, the occipitotemporal ventral pathway and the occipitoparietal
dorsal pathway, which were respectively involved in the recognition of the identity
(“what”) and location (“where”) of objects (see figure 14.2). (More recently, what
was interpreted as the representation of the location of an object has been reinter-
preted as representing what the organism has to do with respect to the object
[“how”].) (See Milner and Goodale, 1998.)

This work has been very influential in both neuroscience and cognitive science,
and Rueckl et al. (1989) used a neural network model for exploring the computa-
tional properties of this “two-systems” design. In their model, neural networks with
different fixed architectures were trained in the “what” and “where” task by using
the back-propagation procedure (Rumelhart and McClelland, 1986) and their per-
formances were compared. The results of the simulations show that modular archi-
tectures perform better than nonmodular ones and construct a better internal
representation of the task.

One way of explaining the better results obtained on the “what” and “where”
tasks with modular networks than with nonmodular ones is to point out that in non-
modular architectures, one and the same connection weight may be involved in two
or more tasks. But in these circumstances one task may require that the connection
weight’s value be increased, whereas the other task may require that it be decreased
(see figure 14.4, left). This conflict may affect the neural network’s performance by
giving rise to a sort of neural interference. On the contrary, in modular architec-
tures, modules are sets of “proprietary” connections that are used to accomplish
only a single task, and therefore the problem of neural interference does not arise
(see figure 14.4, right). Rueckl et al. (1989) hypothesize that this might be one of
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the reasons for the evolutionary emergence of the two distinct neural pathways 1n
real organisms.

To test this hypothesis Di Ferdinando et al. (2001) repeated the experiment of
Rueckl et al. (1989) by allowing the evolution of the network architecture. In Rueckl
et al.’s simulations the network architectures are hardwired by the researcher and
the authors are able to find the best possible architecture (which is a modular archi-
tecture with more hidden units assigned to the more difficult “what” task and fewer
hidden units assigned to the easier “where” task) by trying many different hard-
wired architectures and testing them.

Jacobs and Jordan (1992) used a developmental model in which the network
architecture emerges as a result of a process of development in the individual. The
individual network starts as a set of units, each placed in a particular location of a
bidimensional physical space; then pairs of units may establish connections based
on a principle of “short connections,” according to which two units are more likely
to become connected the closer they are in space. This is an interesting proposal
based on a principle that favors short connections and is likely to play a role in
neural development.

However, the resulting network architecture is not really self-organizing because
it is the researchers who decide the location of units in physical space and there-
fore in a sense hardwire the network architecture. (In the simulations described in
the section “Evolution and Maturation of Modules” there is also development of
the connectivity pattern as in Jacobs and Jordan’s simulations, but both the location
of the network’s units in space and the rules controlling the growth of connections
are genetically inherited and are the result of a self-organizing evolutionary
process.) In the simulations described in this section, although there is no develop-
ment, the network architectures are the spontaneous outcome of a process of
evolution which is independent of the researcher.

In a first set of simulations Di Ferdinando et al. (2001) used a genetic algorithm
for evolving both the architecture and the connection weights of the neural net-
works. The results showed that the genetic algorithm was unable to evolve both the
architecture and the weights. Furthermore, the network architecture that tended to
evolve was different from the best architecture of Rueckl et al. in that it assigned
more resources (hidden units) to the easier “where” task than to the more difficult
“what” task. In other words, the evolutionary algorithm was not able to allocate the
appropriate resources to the two tasks.

The failure of the genetic algorithm to find the best architecture for the “what”
and “where” tasks, and therefore to reach appropriate levels of performance when
both the network architecture and the connection weight are genetically inherited,
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appears to be due not only to the fact that a mutation affecting the architecture can
suddenly make a set of weights evolved for the preceding architecture inappropri-
ate for the new architecture, but also to a phenomenon analogous to genetic linkage.
In simulations in which the architecture is fixed and is the best modular architec-
ture (more units allocated to the “what” task than to the “where” task), the genetic
algorithm appears to be unable to evolve the appropriate connection weights
because a favorable mutation falling on the weights of one module can be accom-
panied by an unfavorable mutation in the weights of the other module. This inter-
ference at the genetic level appears to be unexpected according to models of
population genetics (Wagner, personal communication).

Further analyses of the simulation results reveal other interesting phenomena
that are due to the coevolution of architecture and weights—for example, freezing
of the architecture at low mutation rates and oscillation of the evolved architecture
at high rates.

The best results (i.e., the appropriate modular architecture and high levels of per-
formance) are obtained in simulations in which evolution cooperates with learning.
More specifically, the best solution, as suggested by Elman et al. (1996), is to have
evolution take care of the architecture and learning of the connection weights. With
this solution evolution is free to zero in on the best network architectures without
fear that inherited weights that were appropriate for previous architectures may
‘tum out to be inappropriate for mutated architectures (genetic linkage) and learn-
ing during life is free to find out the best connection weights for each inherited archi-
tt?cture. These simulation results clearly show that evolution and learning are not
dnchoton?ous, as empiricists and nativists sometimes seem to believe, but that their
cooperation is necessary if organisms must be able to acquire complex capacities.

As a final observation we note that, as in the simulations described in the previ-
ous section, the evolved neural modules are not completely isolated and the
modular architecture is not as clean as a “boxes-and-arrows” model. While most
connections are proprietary of the two modules, the “what” module and the “where”
module, there are some connections that are shared by the two modules.

Conclusions

In this chapter we have described a new approach to studying brain/mind modu-
larity which takes into consideration the phylogenetic history of an organism’s brain
modu!es This approach, artificial life, allows us to simulate in the same model an
organism at the genetic, neural, and behavioral levels, and may help us to reveal
how modules at one level may be related to modules at another level
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Brain/mind modularity is a contentious issue in current cognitive science. Cogni-
tivists tend to conceive of the mind as a set of distinct specialized modules, and they
believe that this rich modularity is basically innate. Evolutionary psychologists even
think that each module is adaptive, in that it has been biologically selected as a result
of specific evolutionary pressures. However, other cogpnitivists, such as Chomsky and
Fodor, believe that modules are innate but not necessarily adaptive (Fodor, 2000).
On the other hand, connectionists tend to think that the mind is a more homoge-
neous system that basically genetically inherits only a general capacity to learn from
experience, and that if there are modules, they are the result of development and
learning rather than being innate.

We have maintained that connectionism is not necessarily antimodularist and
antinativist. On the contrary, since neural network models are said to be inspired
by the brain, they must be modular (even if most network architectures used in con-
nectionist simulations are nonmodular) because the brain is a rich structure of spe-
cialized modules. Viewing neural networks in the perspective of artificial life allows
us to develop an appropriately modular and nativist connectionism, evolutionary
connectionism. Artificial life simulations simulate evolving populations of organisms
that inherit a genotype from their parents which, together with experience and
learning, determines the individual phenotype. The way is open then for simulations
that explore whether modular or nonmodular network architectures emerge for
particular tasks, and how evolution and learning can cooperate to shape the indi-
vidual phenotype.

In any case, even if connectionism can be modularistic, this does not imply that
when connectionists talk about modules, they mean the same thing as cognitivists.
Cognitive modules are theoretical entities which are postulated in “boxes-and-
arrows” models used to explain behavioral data. Connectionist modules are anatom-
ically separated and/or functionally specialized parts of the brain. There may be only
partial coextensiveness between the two types of modules, and in any case research
on neural modules is very differently oriented than research on cognitive modules
and considers different types of empirical evidence.

Evolutionary connectionism shares the main goal of evolutionary psychology: to
develop a “psychology informed by the fact that the inherited architecture of human
mind is the product of the evolutionary process” (Barkow et al., 1992), but it differs
from evolutionary psychology in three main ways: (1) it uses neural networks rather
than cognitive models for interpreting human behavior; (2) it adopts computer sim-
ulations for testing evolutionary scenarios; (3) it has a less panadaptionist view of
evolution and is more interested in the rich interplay between genetically inherited
and experiential information. The simulation of evolutionary scenarios allows us to
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take chance and other nonadaptive evolutionary factors into consideration, and
therefore prevents us from explaining all the morphological or functional charac-
teristics of organisms in exclusively adaptationist terms.

We have presented two artificial life simulations in which the genetic algorithm
actually selects for modular architectures for neural networks. In one simulation
both the network architecture and the network weights are genetically inherited
and they evolve, but evolution selects for appropriate maturational sequences. In
the other simulation, evolution and learning cooperate in that evolution selects for
the network architecture and learning finds the weights appropriate for the inher-
ited architecture. These simulations weaken Marcus’s criticism when he says that
“none of [. .. connectionist] models learn to divide themselves into new modules”
(Marcus, 1998, p. 163).

The first of the two simulations described in this chapter also shows that modules
can be inherited (innate), but their exact structure is not necessarily adaptive and
the result of specific evolutionary pressures, but it can be the result of other evolu-
tionary forces, such as chance and preadaptation.

More artificial life simulations are needed to explore how modular architectures
evolve or develop during life, and how selective pressures at the population level
or experience during life may shape the existing modules. But the artificial life per-
spective allows us to explore other research directions that involve the interactions
of modules at the genetic, neural, and behavioral levels (Calabretta et al., 1998). For
example, using neural networks in an artificial life perspective, one can explore if
genetic duplication would facilitate the evolution of specialized modules. This would
r.epresent an important confirmation of the general hypothesis that gene duplica-
tion facilitates the evolution of functional specialization, which was originally pro-
posed by Ohno (1970) and modified by Hughes (1994). We have already shown with
artificial life simulations that this might actually be the case (Calabretta et al., 2000;
see also chapter 2 in this volume). Another research direction would be testing of
whether sexual reproduction might decrease the kind of genetic interference
(linkage) postulated by Di Ferdinando et al. (2001); this would strengthen one of
the several hypotheses formulated about the role of sexual reproduction in evolu-
tion (Michod and Levin, 1988).
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1 5 Modularity and Chunking

Fernand Gobet

Introduction

Like the questions of nature versus nurture, parallelism versus seriality, one-shot
learning versus gradual learning—to mention only a few—the concept of modular-
ity, in its many guises, has provoked a vast amount of debate and controversy in psy-
chology. In its biological connotation, the concept goes back at least to Gall’s
phrenology, which proposed that the shape of the cranial bones was a good indica-
tion of the mental faculties residing within. Used as a way to characterize human
knowledge, the concept goes even farther back in time; for example, in the seven-
teenth century, John Locke proposed a “mental chemistry” of the human mind,
explaining how knowledge is built up hierarchically from simple ideas.

In recent years, the question of modularity has been made central to psychology
for a number of reasons. These include developments in computer science and arti-
ficial intelligence, where a modular knowledge representation is often presented as
a desirable feature; progress in neuroscience, where new anatomical, imaging, and
experimental data have identified a number of brain modules at various levels of
granularity (e.g., Churchland and Sejnowski, 1992): and a resurgence of the nature
versus nurture debate, where modularity has often been seen as conceptually sup-
portive of a nativist position (e.g., Fodor, 1983).

It is obviously not possible to cover all of these strands in a single chapter. Given
the recent controversy about the role of modularity, if any, in “classical”
information-processing models of cognition, I thought it interesting to examine to
what extent such models can be modular. Rather than reviewing several examples
superficially, I have preferred to analyze in detail a single architecture, and to assess
the empirical evidence supporting some notion of modularity. I have therefore
chosen to focus on CHREST (Chunk Hierarchy and REtrieval STructures), the
computational architecture I have developed in recent years to simulate various
aspects of human cognition. Thus, this chapter can be seen as a case study of the
extent to which modularity can be meaningfully applied to a symbolic, computa-
tional model.

The chapter is organized as follows. First, 1 discuss several meanings of the
concept of modularity in psychology. In the second section, I attempt to use these
to characterize the CHREST architecture. Empbhasis is given to one of these mean-
ings (modularity of knowledge), and to how it fits the chunking mechanisms inher-
ent in CHREST. The third section discusses empirical data that attempt to validate
the notion of chunking, and the fourth section presents simulations of these data



