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Evolving Modular Architectures for Neural
Networks

Andrea Di Ferdinando, Raffaele Calabretta & Domenico Parisi

Abstract

Neural networks that learn the What and Where task perform better if they
possess a modular architecture for separately processing the identity and
spatial location of objects. In previous simulations the modular architecture
either was hardwired or it developed during an individual's life based on a
preference for short connections given a set of hardwired unit locations. We
present two sets of simulations in which the network architecture is
genetically inherited and it evolves in a population of neural networks in two
different conditions: (1) both the architecture and the connection weights
evolve; (2) the network architecture is inherited and it evolves but the
connection weights are learned during life. The best results are obtained in
condition (2). Condition (1) gives unsatisfactory results because (a) adapted
sets of weights can suddenly become maladaptive if the architecture changes,
(b) evolution fails to properly assign computational resources (hidden units)
to the two tasks, (c) genetic linkage between sets of weights for different
modules can result in a favourable mutation in one set of weights being
accompanied by an unfavourable mutation in another set of weights.

1. Modularity as a Solution to the Problem of Neural
Interference

Neural networks that learn only one task can have simple architectures and may not
need modularity. However, real organisms generally have not one task but many
different tasks to accomplish in order to survive and reproduce. Hence, their
nervous systems tend to be organized with anatomically and functionally distinct
modules. Using neural networks that have to learn different tasks can help
understand why organisms develop modular nervous systems.

Why are neural modules useful? One possible answer is that modules allow a
neural network to solve the problem of neural interference. Learning consists in
progressively modifying an initial set of weights in such a way that at the end of
learning the network produces the desired output in response to each input.
Consider a single one of these weights. During learning the weight’s initial value is
gradually changed in'such a way that at the end of learning it will be the correct
value, i.e., the weight value that together with the values of the other connection
weights produces the correct output. If the network has only one task to learn, the
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problem can be solved reasonably easily. However, if the network has to learn two
different tasks and the particular connection weight we are considering has a role in
both tasks, i.e., the output the network must generate in response to the input
depends on the value of this weight both when the network is engaged in one task
and when it is engaged in the other task, then the situation may become more
complicated. The correct accomplishment of the first task may require that the
initial weight value of the connection be increased during learning while the correct
accomplishment of the second task may require that the initial value be decreased.
This will lead to some sort of interference or conflict between the two tasks. (The
problem encountered by nonmodular architectures learning multiple tasks is called
“cross-talk” by Plaut and Hinton [11] and Jacobs et al. [7]. Cross-talk refers to
contradictory messages arriving to a neural network’s hidden unit, interference to
contradictory messages arriving to a network’s connection weights. But the two are
more or less equivalent.)

Modularity solves the interference problem. If the network architecture is such
that no single connection weight has a role in determining the network’s output for
both tasks, there will be no interference between the two tasks. The weight value of
each particular connection will be changed during learning to satisfy the
requirements of the single particular task in which the connection plays a role and
it will never happen that the same connection will have to respond to contradictory
pressures to change its weight value. All the connections that play a role in one
particular task and in no other task constitute a module. The connections of a
module are “proprietary”, i.e., they are dedicated exclusively to the
accomplishment of a single task. Their weight value can be adjusted during learning
without interfering with, and being interfered by, other tasks.

An example of the problem of multiple tasks is represented by organisms that
must recognize both the identity (What) and the spatial location (Where) of
visually perceived objects. Nervous systems that must learn this What and Where
task have two separate neural pathways, a ventral (temporal) pathway for
recognizing the identity of the object and a dorsal (parietal) pathway for identifying
its location [14]. (The dorsal pathway can be concerned with “How” to accomplish
a physical movement with respect to the object rather than with “Where” the object
is, but the two interpretations can be considered as equivalent for our purposes.)
Rueckl et al. [13] have taught the What and Where task to both modular and
nonmodular networks using the backpropagation procedure and have found that
modular networks learn much better the task than nonmodular ones. In Rueckl et
al.’s simulations the network architectures are hardwired by the researchers and
what is investigated is how different network architectures give different results. In
biological reality it is not the researcher but nature that creates network
architectures. Hence, it might be interesting to study how modular network
architectures may spontaneously arise as part of a process of development in
individual networks or evolution in a population of networks.

Jacobs and Jordan [8] have described simulations in which modular
architectures for the What and Where task emerge as part of an individual’s
development. Their model is based on a preference for establishing short rather
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than long connections between pairs of neurons during brain development. During
development individual neurons reach particular positions in the physical space of
the brain. When the neurons grow their axons and establish connections with other
neurons, it is more probable that a connection will be established between two
spatially close neurons than between two more distant neurons. Using this simple
developmental rule they were able to show that modular architectures rather than
nonmodular ones tend to emerge as a result of the development of the brain.
However, Jacobs and Jordan [8] seem to be able to obtain this result only because
they hardwired the spatial location of units in such a way that separate modules for
the What and the Where task tend to emerge developmentally. In other words, in
their model nature has replaced the researcher only partially. Modular architectures
emerge because of decisions taken by the researcher, not truly spontaneously. One
could simulate the entire process of the emergence of modular architecture during
brain development by using a genetic algorithm to find out evolutionarily the
appropriate locations of units in the physical space of the nervous system and then
have the preference for short connections generate the appropriate network
architecture during development. This would be more appropriately called
development since it would consist in changes during life in which inherited
genetic information has a critical role. (For a simulation of brain development in
which both the physical location of individual neurons and the establishment of
connections, especially short connections, between neurons emerge
spontaneously, see [4]).

Another possibility is to imagine that biological evolution takes care of the
problem of finding the appropriate modular architecture. Networks that must learn
two distinct tasks are born with a genetically inherited modular architecture which
has been shaped during the course of evolution. Network architecture emerges not
during an individual's life but during a succession of generations in a population of
individuals. (Murre [10] also has suggested to use the genetic algorithm to design
modular network architectures.)

We have conducted two sets of simulations using the genetic algorithm as a
model of evolution to develop neural networks that are able to accomplish the
What and Where task. In a first set of simulations we used the genetic algorithm to
evolve both the network architecture and the connection weights but we were
unable to solve the task using this approach. In a second set of simulations the
genetic algorithm was used to evolve the network architecture but the connection
weights were learned by the individual networks during their ‘life’ using the
backpropagation procedure. This second approach gave the desired solution.

2. The What and Where Task

The What and Where task requires a neural network to recognize both the identity
and the spatial location of perceived objects. In Rueckl et al. [13] the neural
network is presented in each cycle with one of 9 different objects that can appear in
one of 9 different positions on a retina for a total of 9x9=81 possible inputs. The
network has two distinct sets of 9 output units each for indicating the identity and



256

the location of the presented object, respectively, and a single layer of 18 hidden
units. In the nonmodular architecture all the hidden units are connected with both
the What output units and the Where output units. Various modular architectures
are tried out. The modular architecture that performs much better than the
nonmodular architecture has 14 hidden units connected only with the What output
units and the remaining 4 hidden units connected only with the Where output units
(Figure 1). The reason for the success of this particular architecture is that the
What subtask is more difficult than the Where subtask. The networks learn using
the backpropagation procedure.

Where task What task Where task What task
9 Units | |9 Units Output 9 Units 9 Units
18 Units Hidden 4 Units 14 Units
25 Units 25 Units
Input
Nonmodular architecture Modular architecture

Figure 1: Nonmodular (left) and modular (right) network architectures for the
What and Where task.

In Rueckl er al.'s simulations the network architecture is imposed by the
researcher. The networks’ task is to find the appropriate connection weights given a
certain architecture. However, the What and Where task could also be solved at the
population level. Imagine an entire population of networks, each different from all
the others. Individual networks are born with genetically inherited information that
specifies the network architecture and, possibly, also the connection weights. This
genetically inherited information is the result of a process of biological evolution
which takes place in successive generations of individuals and is based on the
selective reproduction of the most successful individuals and the constant addition
of new variants to the population’s genetic pool.

We describe two sets of simulations. In the first set both the network
architectures and the connection weights evolve and are genetically inherited. In the
second set the network architectures evolve and are genetically inherited but the
appropriate connection weights are learned during life by each individual.
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3. Simulations

3.1 Using the Genetic Algorithm to Evolve Both the Network
Architecture and the Connection Weights

Imagine a population of organisms living in an environment in which the
reproductive chances of each individual depend on the individual's performance in
the What and Where task. The individuals that have a smaller error on the What and
Where task are more likely to reproduce than the individuals with a larger error.

An individual is bom with an inherited genotype which is divided up into two
parts. One part specifies the architecture of the individual's neural network and the
other part the network's connection weights. Some general features of the
architecture are fixed and identical in all individuals (and therefore are not encoded
in the genotype and do not evolve). All architectures have three layers of units with
25 input units (encoding a 5xS retina), 18 hidden units, and 18 output units (9 for
indicating the identity of the perceived object and 9 for indicating the object’s
spatial location in the retina). In all architectures each input unit is connected with
all the hidden units. What can vary from an architecture to another are the
connections between the hidden units and the output units. The portion of the
genotype which encodes the network architecture contains 18 genes, one for each
hidden unit. Each of these architectural genes has three possible values that specify
if the corresponding hidden unit is connected (a) to all the What output units, (b) to
all the Where output units, or (c) to both the What and the Where output units. The
third possibility, (c), is included to allow for the evolution of nonmodular
architectures. The other part of the genotype encodes the connection weights and it
includes one gene for each possible connection weight (weight genes). The weight
genes are 774 because there is a maximum of 774 connection weights in a
nonmodular network. Modular architectures have less than 774 genes and in this
case some of the weights may remain unexpressed. The weight genes are encoded
as real numbers.

At the beginning of the simulation a population of 100 individuals is created and
each individual possesses a genotype with random values for both the architectural
and the weight genes. The values of the weight genes are randomly chosen in the
interval between -0.3 and +0.3. Each individual is presented with the 81 input
patterns of the What and Where task and an individual’s fitness is greater the lower
its summed squared error on these patterns. The 20 best individuals are selected for
reproduction. Each of these individuals generates 5 offspring which inherit the
genotype of their single parent with the addition of some random mutations. The
architectural genes are mutated by replacing the value of a gene with a new
randomly chosen value with a probability of 5%. The weight genes are mutated by
adding a quantity randomly chosen in the interval between -1 and +1 to 10% of the
genes. The simulation is terminated after 10,000 generations. Ten replications of
the simulation were run with randomly chosen initial conditions.

The results of the experiment show that the genetic algorithm is unable to solve
the What and Where task if both the architecture and the connection weights are
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subject to evolution and are genetically inherited. The total error is about 40 after
10,000 generations. In Rueckl et al’s simulations using the backpropagation
procedure the terminal error is practically zero for the best architecture. While the
performance in the Where task is good enough but not as good as in Rueckl et al.
(error = 7), the performance in the What task is very poor (error = 33).

These negative results appear to be caused by the difficulty on the part of the
genetic algorithm to evolve an appropriate set of weights if the network
architecture is evolving at the same time. Each architecture has its own appropriate
set of weights and, therefore, changing an architecture can be destructive from the
point of view of the weights. A given set of weights which is appropriate for a given
architecture may be completely inappropriate if the architecture changes. In our
simulations the genotype specifies the weights of all possible connections even if
some of these connections are not expressed in the phenotype. Therefore, when an
unexpressed connection get expressed as a result of a mutation, its value is not
zero. But adding even a single connection with its value already specified can
destroy the equilibrium of the connectivity pattern. The same applies if the weight
value of the new connection is randomly generated or if a previously expressed
connection is canceled by a mutation together with its connection weight.

This interpretation is supported by the results obtained by manipulating the
mutation rate. If the mutation rate of the network architecture is increased (10%),
the final error increases (60). If it is reduced (1% and even 0.1%) the final error
decreases although it never approaches zero (25 for 1% mutation rate; 22 for 0.1%
mutation rate).

However, the bad results of these simulations may be due to another reason in
addition to the disruption caused by the addition or deletion of connections with
their weight value. One would expect that the network architecture that eventually
evolves is the architecture that Rueckl et al. [13] have found is the best
architecture, that is, an architecture with more hidden units dedicated to the more
complex What task than to the simpler Where task. This is not the case in our
simulations. Although the genetic algorithm does evolve modular architectures (on
the average only about 2 hidden units are connected to both the What output units
and the Where output units), the network architecture which tends to evolve has
more hidden units assigned to the Where task than to the What task. It is not
surprising then that the networks' performance on the total task is not good.

The reason for the failure of the genetic algorithm to evolve the appropriate
modular architecture seems to be that in the initial generations the algorithm
concentrates on the easier task, the Where task, and dedicates many computational
resources (hidden units) to this task. When the performance on this task is almost
perfect, however, the algorithm is unable to shift computational resources from the
Where task to the more difficult What task. More specifically, in the earlier
generations the individuals that are selected for reproduction are those that are
good at the Where task even if they are not very good at the What task. These
individuals tend to have network architectures with more hidden units assigned to
the Where task (which decides if they reproduce or not) than to the What task.
When in the later generations competition becomes harsher and selection would
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reward individuals that are good both at the Where task and at the What task, the
random genetic mutations are unable to modify a situation in which most hidden
units are already assigned to the Where task and evolution is unable to produce
individuals that are good at both tasks.

Hidden units Error
Runs Where What Both Where What Total
[
1 15.8 0.7 1.5 5.5 39.1 4.7
2 6.0 5.1 6.9| 4.8 28.7 334
3 3.2 113 3.5 9.9 273 37.1
4 7.2 94 1.4§ 8.9 27.6 36.6|
5 16.4 0.3 1.3 5.8 422 48.0|
6 8.0 54 4.5 6.4 31.1 374
7 6.9 10.8 0.3| 7.5 25.6 33.0]
8 8.0 6.5 3.5 8.4 28.6 370
9 14.8 2.1 1.1 59 41.0 46.9
10 14.8 24 0.7 8.2 44.3 52.6

Table 1: Number of hidden units allocated to the Where task, to the What task, and
to both tasks, and error on the Where task, the What task, and total error for each of
10 replications of the simulation (average of 100 individuals for each replication).
In 3 replications (bold face) more hidden units are allocated to the What task than
to the Where task and still the performance is not good.

However, even this may not be the entire story. If we look at Table 1, we see
that at least in some replications of the simulation (3 out of 10) more hidden units
are correctly dedicated to the What task rather than to the Where task. But even in
these replications of the simulation the error on the What task, and therefore also
the total error, remains quite high. Hence, the failure of the genetic algorithm to
produce efficient networks for the What and Where task appears to be due to its
inability to select the appropriate connection weights even for networks which have
the appropriate modular architecture.

This may reveal a general inability of genetic algorithms of the type we used in
our simulations to evolve the appropriate connection weights for modular
networks. We have run an additional set of simulations (not reported here) in which
the genetic algorithm tries to find the appropriate connection weights given a fixed
modular architecture of the appropriate type, with little success. The reason seems
to be that, since the connection weights of different modules are separately
encoded in the genotype, a favourable mutation of the connection weights of one
module can be accompanied by a nonfavourable mutation of the connection weights
of another module, with little total advantage. This seems to be a form of genetic
linkage. Either the individual in which the two mutations occur is selected for
reproduction - and in this case the nonfavourable mutation in the second module



260

becomes part of the population’s pool -, or the individual is not selected for
reproduction - and in this case the favorable mutation in the first module is lost.

3.2 Using the Genetic Algorithm to KEvolve the Network
Architecture and the Backpropagation Procedure for Learning the
Connection Weights

Perhaps, then, the solution to the various problems we have seen in the simulations
described so far is to use the genetic algorithm to evolve the appropriate network
architecture at the population level and the backpropagation procedure to have each
individual network learn the connection weights for its inherited network
architecture during life. We have run a second set of simulations in which the
inherited genotypes encode a variety of possible network architectures but the
genotype does not encode the connection weights. The connection weights are not
genetically inherited but they are learned during life. At birth each individual is
assigned a random set of weights for the particular network architecture it inherits
and then the individual learns to do the What and Where task exactly as in the
Rueckl et al.’s simulations. At the end of learning the terminal error of each
individual determines the individual’s reproductive chances.

Hidden units Error
Where What Both Where What Total
4.7 12.2 1.1 0.0 1.6 1.6

Table 2: Number of hidden units allocated to the Where task, to the What task, and
to both tasks, and error on the Where task, the What task, and total error for the
average individual in the last generation (average of 10 replications of the
simulation).

The results are that, first, at the end of the simulation the terminal error is near
zero for both the What and the Where tasks - even if it is still somewhat larger for
the What task - and, second, the evolved network architectures tend to be the
optimal architectures with more hidden units dedicated to the What task than to the
Where task (Table 2).

4, Discussion

A neural network that must acquire a capacity to do more than one tasks is better
able to acquire this capacity if the network architecture is modular because neural
modules prevent the occurrence of neural interference, defined as the arrival of
contradictory messages during learning for changing the value of connection
weights involved in more than one task. Neural modules contain connection
weights involved in only one task and therefore they avoid neural interference.
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Neural modules can be hardwired by the researcher or they can spontaneously
emerge during development or evolution. Using the genetic algorithm as a model
of biological evolution we have simulated the evolution of network architectures
that are appropriate for recognizing both the identity and the spatial location of
perceived objects. Modular and nonmodular architectures compete in the
successive generations of a population of neural networks and modular
architectures should emerge as the winning ones.

We have compared two conditions, one in which both the network architecture
and the connection weights evolve and are genetically inherited and another one in
which only the architecture evolves and is inherited while the connection weights
are learned during an individual’s life. Only the second condition produces
satisfying results, that is, the appropriate modular architecture and high levels of
performance in the task. If both the architecture and the connection weights are
encoded in the genotype, a change in the network architecture with the addition or
deletion of even a single connection can suddenly make a set of weights that has
evolved with the preceding architecture inappropriate. Furthermore, evolution may
not be the best method for evolving the connection weights for modular networks
because a favorable genetic mutation in one module may be accompanied by an
unfavorable mutation in another module, although sexual recombination or genetic
duplication [3] might help solve this problem.

As suggested by various authors (see, for example, [2]), cooperation between
evolution and learning can be the best solution to the problem of acquiring complex
capacities, compared with having either evolution or learning completely take care
of the problem. However, it is not only that evolution and learning must cooperate
and both have a role in the acquisition process but the best solution might be to
have evolution take care of the network architecture and learning of the connection
weights. Hence, the network architecture is genetically inherited but the
connection weights are not. They are learned during life. (This solution has been
proposed on the basis of more general considerations by Elman et al. [5]).

One should not, however, overemphasize this particular type of division of labor
between evolution and learning. A number of other arrangements may exist that
maintain the general scheme of entrusting the network architecture to evolution and
the connection weights to learning but distribute the details of this scheme
differently. For example, the initial connection weights can be encoded in the
genotype and then learning modifies these initial weights. It has been shown that the
initial weights influence learning [9] and that evolution may find out what are the
best initial weights for learning some particular task (see, for example, [1]). Other
schemes may involve the genetic encoding not of the actual connection weights
themselves but only of various constraints on the connection weights. For example,
whether some particular connection weight is positive (excitatory) or negative
(inhibitory) may be encoded in the genotype but it is learning that finds out what is
the most appropriate absolute value for the weight. Or the range of variation of the
value of some weight may be encoded in the genotype, but the actual value within
this range is identified by learning. Or, again, evolution can find the appropriate
learning parameters and learning the actual weight values [6]). On the other side,
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learning can change an inherited network architecture by adding and/or deleting
connections (cf. the pruning and tiling algorithms [12]). However, it could still be
the general case that evolution identifies the general layout of a species’ brain and
learning refines what is inherited by adjusting the weights on the brain’s
connections.
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Evolution, Development and Learning - a Nested
Hierarchy?

T.E. Dickins & J.P. Levy

Abstract

The Dynamical Hypothesis [22] is gathering force within cognitive science
and within biology. Evolutionary, developmental and learning processes can
all be characterised by the DH and any models should try to account for this
property. The processes differ in terms of their operational time-scale and the
resources each has to hand. Evolution sets the parameters for the dynamical
interactions in development and learning. Could all three processes possibly
be regarded as a nested hierarchy sharing the same dynamical properties? We
ask this question and argue that a DH understanding of the potential evolution
of cognitive systems could inform subsequent modelling.

1. Introduction

The aim of this paper is to provide a brief survey of the role of the "Dynamical
Hypothesis" (DH) [22] within cognitive science at a number of different levels of
explanation. We specifically want to make the following main points:

e The DH potentially unifies explanations of cognition at the evolutionary,
developmental, and learning levels;

e Evolutionary constraints on cognition need to be seen as "running through"
development and learning, but effects at the other levels can influence evolution;

e “We need to model and simulate the above in order to support theory.

First, we shall make some general epistemological points to focus our argument.

Science is about discovering the order of the universe and explaining the causes
and functions of that order. We observe order in our everyday dealings with the
universe and such observations form the foundation of our folk theories. Scientific
methods enable scientists to uncover fundamental natural kinds of the universe and
understand how they interact in order to produce the higher level phenomena that
interest us.

The behavioural and cognitive sciences are interested in explaining how it is that
organisms regularly mediate between input and output. Hendriks-Jansen [10] has



