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Abstract 
 
Neural networks that learn the What and Where task perform better if they 
possess a modular architecture for separately processing the identity and 
spatial location of objects. In previous simulations the modular architecture 
either was hardwired or it developed during an individual's life based on a 
preference for short connections given a set of hardwired unit locations. We 
present two sets of simulations in which the network architecture is genetically 
inherited and it evolves in a population of neural networks in two different 
conditions: (1) both the architecture and the connection weights evolve; (2) 
the network architecture is inherited and it evolves but the connection weights 
are learned during life. The best results are obtained in condition (2). Condition 
(1) gives unsatisfactory results because (a) adapted sets of weights can 
suddenly become maladaptive if the architecture changes, (b) evolution fails to 
properly assign computational resources (hidden units) to the two tasks, (c) 
genetic linkage between sets of weights for different modules can result in a 
favourable mutation in one set of weights being accompanied by an 
unfavourable mutation in another set of weights. 
 

1. Modularity as a Solution to the Problem of Neural 
Interference 

 
Neural networks that learn only one task can have simple architectures and may not 
need modularity. However, real organisms generally have not one task but many 
different tasks to accomplish in order to survive and reproduce. Hence, their nervous 
systems tend to be organized with anatomically and functionally distinct modules. 
Using neural networks that have to learn different tasks can help understand why 
organisms develop modular nervous systems.  

Why are neural modules useful? One possible answer is that modules allow a 
neural network to solve the problem of neural interference. Learning consists in 
progressively modifying an initial set of weights in such a way that at the end of 
learning the network produces the desired output in response to each input. 
Consider a single one of these weights. During learning the weight’s initial value is 
gradually changed in such a way that at the end of learning it will be the correct 
value, i.e., the weight value that together with the values of the other connection 



 

weights produces the correct output. If the network has only one task to learn, the 
problem can be solved reasonably easily. However, if the network has to learn two 
different tasks and the particular connection weight we are considering has a role in 
both tasks, i.e., the output the network must generate in response to the input 
depends on the value of this weight both when the network is engaged in one task 
and when it is engaged in the other task, then the situation may become more 
complicated. The correct accomplishment of the first task may require that the initial 
weight value of the connection be increased during learning while the correct 
accomplishment of the second task may require that the initial value be decreased. 
This will lead to some sort of interference or conflict between the two tasks. (The 
problem encountered by nonmodular architectures learning multiple tasks is called 
“cross-talk” by Plaut and Hinton [11] and Jacobs et al. [7]. Cross-talk refers to 
contradictory messages arriving to a neural network’s hidden unit, interference to 
contradictory messages arriving to a network’s connection weights. But the two are 
more or less equivalent.) 

Modularity solves the interference problem. If the network architecture is such 
that no single connection weight has a role in determining the network’s output for 
both tasks, there will be no interference between the two tasks. The weight value of 
each particular connection will be changed during learning to satisfy the 
requirements of the single particular task in which the connection plays a role and it 
will never happen that the same connection will have to respond to contradictory 
pressures to change its weight value. All the connections that play a role in one 
particular task and in no other task constitute a mo dule. The connections of a module 
are “proprietary”, i.e., they are dedicated exclusively to the accomplishment of a 
single task. Their weight value can be adjusted during learning without interfering 
with, and being interfered by, other tasks.  

An example of the problem of multiple tasks is represented by organisms that 
must recognize both the identity (What) and the spatial location (Where) of visually 
perceived objects. Nervous systems that must learn this What and Where task have 
two separate neural pathways, a ventral (temporal) pathway for recognizing the 
identity of the object and a dorsal (parietal) pathway for identifying its location [14]. 
(The dorsal pathway can be concerned with “How” to accomplish a physical 
movement with respect to the object rather than with “Where” the object is, but the 
two interpretations can be considered as equivalent for our purposes.) Rueckl et al. 
[13] have taught the What and Where task to both modular and nonmodular 
networks using the backpropagation procedure and have found that modular 
networks learn much better the task than nonmodular ones. In Rueckl et al.’s 
simulations the network architectures are hardwired by the researchers and what is 
investigated is how different network architectures give different results. In 
biological reality it is not the researcher but nature that creates network architectures. 
Hence, it might be interesting to study how modular network architectures may 
spontaneously arise as part of a process of development in individual networks or 
evolution in a population of networks. 

Jacobs and Jordan [8] have described simulations in which modular architectures 
for the What and Where task emerge as part of an individual’s development. Their 



 

model is based on a preference for establishing short rather than long connections 
between pairs of neurons during brain development. During development individual 
neurons reach particular positions in the physical space of the brain. When the 
neurons grow their axons and establish connections with other neurons, it is more 
probable that a connection will be established between two spatially close neurons 
than between two more distant neurons. Using this simple developmental rule they 
were able to show that modular architectures rather than nonmodular ones tend to 
emerge as a result of the development of the brain. However, Jacobs and Jordan [8] 
seem to be able to obtain this result only because they hardwired the spatial location 
of units in such a way that separate modules for the What and the Where task tend 
to emerge developmentally. In other words, in their model nature has replaced the 
researcher only partially. Modular architectures emerge because of decisions taken 
by the researcher, not truly spontaneously. One could simulate the entire process of 
the emergence of modular architecture during brain development by using a genetic 
algorithm to find out evolutionarily the appropriate locations of  units in the physical 
space of the nervous system and then have the preference for short connections 
generate the appropriate network architecture during development. This would be 
more appropriately called development since it would consist in changes during life 
in which inherited genetic information has a critical role. (For a simulation of brain 
development in which both the physical location of individual neurons and the 
establishment of connections, especially short connections, between neurons 
emerge spontaneously, see [4]).  

Another possibility is to imagine that biological evolution takes care of the 
problem of finding the appropriate modular architecture. Networks that must learn 
two distinct tasks are born with a genetically inherited modular architecture which 
has been shaped during the course of evolution. Network architecture emerges not 
during an individual's life but during a succession of generations in a population of 
individuals. (Murre [10] also has suggested to use the genetic algorithm to design 
modular network architectures.)  

We have conducted two sets of simulations using the genetic algorithm as a 
model of evolution to develop neural networks that are able to accomplish the What 
and Where task. In a first set of simulations we used the genetic algorithm to evolve 
both the network architecture and the connection weights but we were unable to 
solve the task using this approach. In a second set of simulations the genetic 
algorithm was used to evolve the network architecture but the connection weights 
were learned by the individual networks during their ‘life’ using the backpropagation 
procedure. This second approach gave the desired solution. 

 

2. The What and Where Task 
 
The What and Where task requires a neural network to recognize both the identity 
and the spatial location of perceived objects. In Rueckl et al. [12] the neural network 
is presented in each cycle with one of 9 different objects that can appear in one of 9 
different positions on a retina for a total of 9x9=81 possible inputs. The network has 
two distinct sets of 9 output units each for indicating the identity and the location of 



 

the presented object, respectively, and a single layer of 18 hidden units. In the 
nonmodular architecture all the hidden units are connected with both the What 
output units and the Where output units. Various modular architectures are tried out. 
The modular architecture that performs much better than the nonmodular architecture 
has 14 hidden units connected only with the What output units and the remaining 4 
hidden units connected only with the Where output units (Figure 1). The reason for 
the success of this particular architecture is that the What subtask is more difficult 
than the Where subtask. The networks learn using the backpropagation procedure. 
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    Where task       What task   Where task         What task

Nonmodular architecture Modular architecture

 
 
Figure 1: Nonmodular (left) and modular (right) network architectures for the What 
and Where task. 

 
In Rueckl et al.'s simulations the network architecture is imposed by the 

researcher. The networks’ task is to find the appropriate connection weights given a 
certain architecture. However, the What and Where task could also be solved at the 
population level. Imagine an entire population of networks, each different from all the 
others. Individual networks are born with genetically inherited information that 
specifies the network architecture and, possibly, also the connection weights. This 
genetically inherited information is the result of a process of biological evolution 
which takes place in successive generations of individuals and is based on the 
selective reproduction of the most successful individuals and the constant addition 
of new variants to the population’s genetic pool. 

We describe two sets of simulations. In the first set both the network 
architectures and the connection weights evolve and are genetically inherited. In the 
second set the network architectures evolve and are genetically inherited but the 
appropriate connection weights are learned during life by each individual. 

 

3. Simulations 



 

 
3.1 Using the Genetic Algorithm to Evolve Both the Network 
Architecture and the Connection Weights 

 
Imagine a population of organisms living in an environment in which the 
reproductive chances of each individual depend on the individual's performance in 
the What and Where task. The individuals that have a smaller error on the What and 
Where task are more likely to reproduce than the individuals with a larger error.  

An individual is born with an inherited genotype which is divided up into two 
parts. One part specifies the architecture of the individual's neural network and the 
other part the network's connection weights. Some general features of the 
architecture are fixed and identical in all individuals (and therefore are not encoded in 
the genotype and do not evolve). All architectures have three layers of units with 25 
input units (encoding a 5x5 retina), 18 hidden units, and 18 output units (9 for 
indicating the identity of the perceived object and 9 for indicating the object’s spatial 
location in the retina). In all architectures each input unit is connected with all the 
hidden units. What can vary from an architecture to another are the connections 
between the hidden units and the output units. The portion of the genotype which 
encodes the network architecture contains 18 genes, one for each hidden unit. Each 
of these architectural genes has three possible values that specify if the 
corresponding hidden unit is connected (a) to all the What output units, (b) to all the 
Where output units, or (c) to both the What and the Where output units. The third 
possibility, (c), is included to allow for the evolution of nonmodular architectures. 
The other part of the genotype encodes the connection weights and it includes one 
gene for each possible connection weight (weight genes). The weight genes are 774 
because there is a maximum of 774 connection weights in a nonmodular network. 
Modular architectures have less than 774 genes and in this case some of the weights 
may remain unexpressed. The weight genes are encoded as real numbers. 

At the beginning of the simulation a population of 100 individuals is created and 
each individual possesses a genotype with random values for both the architectural 
and the weight genes. The values of the weight genes are randomly chosen in the 
interval between -0.3 and +0.3. Each individual is presented with the 81 input patterns 
of the What and Where task and an individual’s fitness is greater the lower its 
summed squared error on these patterns. The 20 best individuals are selected for 
reproduction. Each of these individuals generates 5 offspring which inherit the 
genotype of their single parent with the addition of some random mutations. The 
architectural genes are mutated by replacing the value of a gene with a new randomly 
chosen value with a probability of 5%. The weight genes are mutated by adding a 
quantity randomly chosen in the interval between -1 and +1 to 10% of the genes. The 
simulation is terminated after 10,000 generations. Ten replications of the simulation 
were run with randomly chosen initial conditions. 

The results of the experiment show that the genetic algorithm is unable to solve 
the What and Where task if both the architecture and the connection weights are 
subject to evolution and are genetically inherited. The total error is about 40 after 
10,000 generations. In Rueckl et al.’s simulations using the backpropagation 



 

procedure the terminal error is practically zero for the best architecture. While the 
performance in the Where task is good enough but not as good as in Rueckl et al. 
(error = 7), the performance in the What task is very poor (error = 33). 

These negative results appear to be caused by the difficulty on the part of the 
genetic algorithm to evolve an appropriate set of weights if the network architecture 
is evolving at the same time. Each architecture has its own appropriate set of weights 
and, therefore, changing an architecture can be destructive from the point of view of 
the weights. A given set of weights which is appropriate for a given architecture may 
be completely inappropriate if the architecture changes. In our simulations the 
genotype specifies the weights of all possible connections even if some of these 
connections are not expressed in the phenotype. Therefore, when an unexpressed 
connection get expressed as a result of a mutation, its value is not zero. But adding 
even a single connection with its value already specified can destroy the equilibrium 
of the connectivity pattern. The same applies if the weight value of the new 
connection is randomly generated or if a previously expressed connection is 
canceled by a mutation together with its connection weight. 

This interpretation is supported by the results obtained by manipulating the 
mutation rate. If the mutation rate of the network architecture is increased (10%), the 
final error increases (60). If it is reduced (1% and even 0.1%) the final error decreases 
although it never approaches zero (25 for 1% mutation rate; 22 for 0.1% mutation 
rate). 

However, the bad results of these simulations may be due to another reason in 
addition to the disruption caused by the addition or deletion of connections with 
their weight value. One would expect that the network architecture that eventually 
evolves is the architecture that Rueckl et al. [13] have found is the best architecture, 
that is, an architecture with more hidden units dedicated to the more complex What 
task than to the simpler Where task. This is not the case in our simulations. Although 
the genetic algorithm does evolve modular architectures (on the average only about 2 
hidden units are connected to both the What output units and the Where output 
units), the network architecture which tends to evolve has more hidden units 
assigned to the Where task than to the What task. It is not surprising then that the 
networks' performance on the total task is not good.  

The reason for the failure of the genetic algorithm to evolve the appropriate 
modular architecture seems to be that in the initial generations the algorithm 
concentrates on the easier task, the Where task, and dedicates many computational 
resources (hidden units) to this task. When the performance on this task is almost 
perfect, however, the algorithm is unable to shift computational resources from the 
Where task to the more difficult What task. More specifically, in the earlier 
generations the individuals that are selected for reproduction are those that are good 
at the Where task even if they are not very good at the What task. These individuals 
tend to have network architectures with more hidden units assigned to the Where 
task (which decides if they reproduce or not) than to the What task. When in the 
later generations competition becomes harsher and selection would reward 
individuals that are good both at the Where task and at the What task, the random 
genetic mutations are unable to modify a situation in which most hidden units are 



 

already assigned to the Where task and evolution is unable to produce individuals 
that are good at both tasks. 
 

Runs Where What Both Where What Total
1 15.8 0.7 1.5 5.5 39.1 44.7
2 6.0 5.1 6.9 4.8 28.7 33.4
3 3.2 11.3 3.5 9.9 27.3 37.1
4 7.2 9.4 1.4 8.9 27.6 36.6
5 16.4 0.3 1.3 5.8 42.2 48.0
6 8.0 5.4 4.5 6.4 31.1 37.4
7 6.9 10.8 0.3 7.5 25.6 33.0
8 8.0 6.5 3.5 8.4 28.6 37.0
9 14.8 2.1 1.1 5.9 41.0 46.9
10 14.8 2.4 0.7 8.2 44.3 52.6

Hidden units Error

 
 
Table 1: Number of hidden units allocated to the Where task, to the What task, and 
to both tasks, and error on the Where task, the What task, and total error for each of 
10 replications of the simulation (average of 100 individuals for each replication). In 3 
replications (bold face) more hidden units are allocated to the What task than to the 
Where task and still the performance is not good. 

 
However, even this may not be the entire story. If we look at Table 1, we see that 

at least in some replications of the simulation (3 out of 10) more hidden units are 
correctly dedicated to the What task rather than to the Where task. But even in these 
replications of the simulation the error on the What task, and therefore also the total 
error, remains quite high. Hence, the failure of the genetic algorithm to produce 
efficient networks for the What and Where task appears to be due to its inability to 
select the appropriate connection weights even for networks which have the 
appropriate modular architecture. 

This may reveal a general inability of genetic algorithms of the type we used in 
our simulations to evolve the appropriate connection weights for modular networks. 
We have run an additional set of simulations (not reported here) in which the genetic 
algorithm tries to find the appropriate connection weights given a fixed modular 
architecture of the appropriate type, with little success. The reason seems to be that, 
since the connection weights of different modules are separately encoded in the 
genotype, a favourable mutation of the connection weights of one module can be 
accompanied by a nonfavourable mutation of the connection weights of another 
module, with little total advantage. This seems to be a form of genetic linkage. Either 
the individual in which the two mutations occur is selected for reproduction - and in 
this case the nonfavourable mutation in the second module becomes part of the 
population’s pool -, or the individual is not selected for reproduction - and in this 
case the favorable mutation in the first module is lost.  

 



 

3.2 Using the Genetic Algorithm to Evolve the Network Architecture 
and the Backpropagation Procedure for Learning the Connection 
Weights 

 
Perhaps, then, the solution to the various problems we have seen in the simulations 
described so far is to use the genetic algorithm to evolve the appropriate network 
architecture at the population level and the backpropagation procedure to have each 
individual network learn the connection weights for its inherited network architecture 
during life. We have run a second set of simulations in which the inherited 
genotypes encode a variety of possible network architectures but the genotype does 
not encode the connection weights. The connection weights are not genetically 
inherited but they are learned during life. At birth each individual is assigned a 
random set of weights for the particular network architecture it inherits and then the 
individual learns to do the What and Where task exactly as in the Rueckl et al.’s 
simulations. At the end of learning the terminal error of each individual determines 
the individual’s reproductive chances. 
 

Where What Both Where What Total
4.7 12.2 1.1 0.0 1.6 1.6

Hidden units Error

 
 
Table 2: Number of hidden units allocated to the Where task, to the What task, and 
to both tasks, and error on the Where task, the What task, and total error for the 
average individual in the last generation (average of 10 replications of the 
simulation). 
 

The results are that, first, at the end of the simulation the terminal error is near 
zero for both the What and the Where tasks - even if it is still somewhat larger for the 
What task - and, second, the evolved network architectures tend to be the optimal 
architectures with more hidden units dedicated to the What task than to the Where 
task (Table 2). 

 

4. Discussion 
 

A neural network that must acquire a capacity to do more than one tasks is better 
able to acquire this capacity if the network architecture is modular because neural 
modules prevent the occurrence of neural interference, defined as the arrival of 
contradictory messages during learning for changing the value of connection 
weights involved in more than one task. Neural modules contain connection weights 
involved in only one task and therefore they avoid neural interference. 

Neural modules can be hardwired by the researcher or they can spontaneously 
emerge during development or evolution. Using the genetic algorithm as a model of 
biological evolution we have simulated the evolution of network architectures that 
are appropriate for recognizing both the identity and the spatial location of perceived 



 

objects. Modular and nonmodular architectures compete in the successive 
generations of a population of neural networks and modular architectures should 
emerge as the winning ones. 

We have compared two conditions, one in which both the network architecture 
and the connection weights evolve and are genetically inherited and another one in 
which only the architecture evolves and is inherited while the connection weights are 
learned during an individual’s life. Only the second condition produces satisfying 
results, that is, the appropriate modular architecture and high levels of performance in 
the task. If both the architecture and the connection weights are encoded in the 
genotype, a change in the network architecture with the addition or deletion of even 
a single connection can suddenly make a set of weights that has evolved with the 
preceding architecture inappropriate. Furthermore, evolution may not be the best 
method for evolving the connection weights for modular networks because a 
favorable genetic mutation in one module may be accompanied by an unfavorable 
mutation in another module, although sexual recombination or genetic duplication [3] 
might help solve this problem.  

As suggested by various authors (see, for example, [2]), cooperation between 
evolution and learning can be the best solution to the problem of acquiring complex 
capacities, compared with having either evolution or learning completely take care of 
the problem. However, it is not only that evolution and learning must cooperate and 
both have a role in the acquisition process but the best solution might be to have 
evolution take care of the network architecture and learning of the connection 
weights. Hence, the network architecture is genetically inherited but the connection 
weights are not. They are learned during life. (This solution has been proposed on 
the basis of more general considerations by Elman et al. [5]). 

One should not, however, overemphasize this particular type of division of labor 
between evolution and learning. A number of other arrangements may exist that 
maintain the general scheme of entrusting the network architecture to evolution and 
the connection weights to learning but distribute the details of this scheme 
differently. For example, the initial connection weights can be encoded in the 
genotype and then learning modifies these initial weights. It has been shown that the 
initial weights influence learning [9] and that evolution may find out what are the best 
initial weights for learning some particular task (see, for example, [1]). Other schemes 
may involve the genetic encoding not of the actual connection weights themselves 
but only of various constraints on the connection weights. For example, whether 
some particular connection weight is positive (excitatory) or negative (inhibitory) 
may be encoded in the genotype but it is learning that finds out what is the most 
appropriate absolute value for the weight. Or the range of variation of the value of 
some weight may be encoded in the genotype, but the actual value within this range 
is identified by learning. Or, again, evolution can find the appropriate learning 
parameters and learning the actual weight values [6]. On the other side, learning can 
change an inherited network architecture by adding and/or deleting connections (cf. 
the pruning and tiling algorithms [12]). However, it could still be the general case that 
evolution identifies the general layout of a species’ brain and learning refines what is 
inherited by adjusting the weights on the brain’s connections. 
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