
Neural Systems and Artificial Life Group,
Institute of Psychology,

National Research Council, Rome

Evolving Modular Architectures for Neural
Networks

Andrea Di Ferdinando, Raffaele Calabretta and Domenico Parisi

September 14, 2000
(revised October 24, 2000)

In: R. French & J. Sougné (Eds.), Proceedings of the sixth Neural Computation and
Psychology Workshop: Evolution, Learning, and Development, pp. 253-262,
London: Springer Verlag.

Department of Neural Systems and Artificial Life

Institute of Psychology, Italian National Research Council
V.le Marx, 15 00137 Rome - Italy

Phone: +39-06-860901, Fax: +39-06-824737
E-mail: {andread, rcalabretta, parisi}@ip.rm.cnr.it

http://gral.ip.rm.cnr.it

Evolving Modular Architectures for Neural
Networks

Andrea Di Ferdinando, Raffaele Calabretta & Domenico Parisi

Institute of Psychology
National Research Council, Rome, Italy

{andread, rcalabretta, parisi}@ip.rm.cnr.it

Abstract

Neural networks that learn the What and Where task perform better if they
possess a modular architecture for separately processing the identity and
spatial location of objects. In previous simulations the modular architecture
either was hardwired or it developed during an individual's life based on a
preference for short connections given a set of hardwired unit locations. We
present two sets of simulations in which the network architecture is genetically
inherited and it evolves in a population of neural networks in two different
conditions: (1) both the architecture and the connection weights evolve; (2)
the network architecture is inherited and it evolves but the connection weights
are learned during life. The best results are obtained in condition (2). Condition
(1) gives unsatisfactory results because (a) adapted sets of weights can
suddenly become maladaptive if the architecture changes, (b) evolution fails to
properly assign computational resources (hidden units) to the two tasks, (c)
genetic linkage between sets of weights for different modules can result in a
favourable mutation in one set of weights being accompanied by an
unfavourable mutation in another set of weights.

1. Modularity as a Solution to the Problem of Neural
Interference

Neural networks that learn only one task can have simple architectures and may not
need modularity. However, real organisms generally have not one task but many
different tasks to accomplish in order to survive and reproduce. Hence, their nervous
systems tend to be organized with anatomically and functionally distinct modules.
Using neural networks that have to learn different tasks can help understand why
organisms develop modular nervous systems.

Why are neural modules useful? One possible answer is that modules allow a
neural network to solve the problem of neural interference. Learning consists in
progressively modifying an initial set of weights in such a way that at the end of
learning the network produces the desired output in response to each input.
Consider a single one of these weights. During learning the weight’s initial value is
gradually changed in such a way that at the end of learning it will be the correct
value, i.e., the weight value that together with the values of the other connection

weights produces the correct output. If the network has only one task to learn, the
problem can be solved reasonably easily. However, if the network has to learn two
different tasks and the particular connection weight we are considering has a role in
both tasks, i.e., the output the network must generate in response to the input
depends on the value of this weight both when the network is engaged in one task
and when it is engaged in the other task, then the situation may become more
complicated. The correct accomplishment of the first task may require that the initial
weight value of the connection be increased during learning while the correct
accomplishment of the second task may require that the initial value be decreased.
This will lead to some sort of interference or conflict between the two tasks. (The
problem encountered by nonmodular architectures learning multiple tasks is called
“cross-talk” by Plaut and Hinton [11] and Jacobs et al. [7]. Cross-talk refers to
contradictory messages arriving to a neural network’s hidden unit, interference to
contradictory messages arriving to a network’s connection weights. But the two are
more or less equivalent.)

Modularity solves the interference problem. If the network architecture is such
that no single connection weight has a role in determining the network’s output for
both tasks, there will be no interference between the two tasks. The weight value of
each particular connection will be changed during learning to satisfy the
requirements of the single particular task in which the connection plays a role and it
will never happen that the same connection will have to respond to contradictory
pressures to change its weight value. All the connections that play a role in one
particular task and in no other task constitute a mo dule. The connections of a module
are “proprietary”, i.e., they are dedicated exclusively to the accomplishment of a
single task. Their weight value can be adjusted during learning without interfering
with, and being interfered by, other tasks.

An example of the problem of multiple tasks is represented by organisms that
must recognize both the identity (What) and the spatial location (Where) of visually
perceived objects. Nervous systems that must learn this What and Where task have
two separate neural pathways, a ventral (temporal) pathway for recognizing the
identity of the object and a dorsal (parietal) pathway for identifying its location [14].
(The dorsal pathway can be concerned with “How” to accomplish a physical
movement with respect to the object rather than with “Where” the object is, but the
two interpretations can be considered as equivalent for our purposes.) Rueckl et al.
[13] have taught the What and Where task to both modular and nonmodular
networks using the backpropagation procedure and have found that modular
networks learn much better the task than nonmodular ones. In Rueckl et al.’s
simulations the network architectures are hardwired by the researchers and what is
investigated is how different network architectures give different results. In
biological reality it is not the researcher but nature that creates network architectures.
Hence, it might be interesting to study how modular network architectures may
spontaneously arise as part of a process of development in individual networks or
evolution in a population of networks.

Jacobs and Jordan [8] have described simulations in which modular architectures
for the What and Where task emerge as part of an individual’s development. Their

model is based on a preference for establishing short rather than long connections
between pairs of neurons during brain development. During development individual
neurons reach particular positions in the physical space of the brain. When the
neurons grow their axons and establish connections with other neurons, it is more
probable that a connection will be established between two spatially close neurons
than between two more distant neurons. Using this simple developmental rule they
were able to show that modular architectures rather than nonmodular ones tend to
emerge as a result of the development of the brain. However, Jacobs and Jordan [8]
seem to be able to obtain this result only because they hardwired the spatial location
of units in such a way that separate modules for the What and the Where task tend
to emerge developmentally. In other words, in their model nature has replaced the
researcher only partially. Modular architectures emerge because of decisions taken
by the researcher, not truly spontaneously. One could simulate the entire process of
the emergence of modular architecture during brain development by using a genetic
algorithm to find out evolutionarily the appropriate locations of units in the physical
space of the nervous system and then have the preference for short connections
generate the appropriate network architecture during development. This would be
more appropriately called development since it would consist in changes during life
in which inherited genetic information has a critical role. (For a simulation of brain
development in which both the physical location of individual neurons and the
establishment of connections, especially short connections, between neurons
emerge spontaneously, see [4]).

Another possibility is to imagine that biological evolution takes care of the
problem of finding the appropriate modular architecture. Networks that must learn
two distinct tasks are born with a genetically inherited modular architecture which
has been shaped during the course of evolution. Network architecture emerges not
during an individual's life but during a succession of generations in a population of
individuals. (Murre [10] also has suggested to use the genetic algorithm to design
modular network architectures.)

We have conducted two sets of simulations using the genetic algorithm as a
model of evolution to develop neural networks that are able to accomplish the What
and Where task. In a first set of simulations we used the genetic algorithm to evolve
both the network architecture and the connection weights but we were unable to
solve the task using this approach. In a second set of simulations the genetic
algorithm was used to evolve the network architecture but the connection weights
were learned by the individual networks during their ‘life’ using the backpropagation
procedure. This second approach gave the desired solution.

2. The What and Where Task

The What and Where task requires a neural network to recognize both the identity
and the spatial location of perceived objects. In Rueckl et al. [12] the neural network
is presented in each cycle with one of 9 different objects that can appear in one of 9
different positions on a retina for a total of 9x9=81 possible inputs. The network has
two distinct sets of 9 output units each for indicating the identity and the location of

the presented object, respectively, and a single layer of 18 hidden units. In the
nonmodular architecture all the hidden units are connected with both the What
output units and the Where output units. Various modular architectures are tried out.
The modular architecture that performs much better than the nonmodular architecture
has 14 hidden units connected only with the What output units and the remaining 4
hidden units connected only with the Where output units (Figure 1). The reason for
the success of this particular architecture is that the What subtask is more difficult
than the Where subtask. The networks learn using the backpropagation procedure.

Input

Hidden

Output9 Units 9 Units

18 Units

25 Units

9 Units 9 Units

25 Units

4 Units 14 Units

 Where task What task Where task What task

Nonmodular architecture Modular architecture

Figure 1: Nonmodular (left) and modular (right) network architectures for the What
and Where task.

In Rueckl et al.'s simulations the network architecture is imposed by the

researcher. The networks’ task is to find the appropriate connection weights given a
certain architecture. However, the What and Where task could also be solved at the
population level. Imagine an entire population of networks, each different from all the
others. Individual networks are born with genetically inherited information that
specifies the network architecture and, possibly, also the connection weights. This
genetically inherited information is the result of a process of biological evolution
which takes place in successive generations of individuals and is based on the
selective reproduction of the most successful individuals and the constant addition
of new variants to the population’s genetic pool.

We describe two sets of simulations. In the first set both the network
architectures and the connection weights evolve and are genetically inherited. In the
second set the network architectures evolve and are genetically inherited but the
appropriate connection weights are learned during life by each individual.

3. Simulations

3.1 Using the Genetic Algorithm to Evolve Both the Network
Architecture and the Connection Weights

Imagine a population of organisms living in an environment in which the
reproductive chances of each individual depend on the individual's performance in
the What and Where task. The individuals that have a smaller error on the What and
Where task are more likely to reproduce than the individuals with a larger error.

An individual is born with an inherited genotype which is divided up into two
parts. One part specifies the architecture of the individual's neural network and the
other part the network's connection weights. Some general features of the
architecture are fixed and identical in all individuals (and therefore are not encoded in
the genotype and do not evolve). All architectures have three layers of units with 25
input units (encoding a 5x5 retina), 18 hidden units, and 18 output units (9 for
indicating the identity of the perceived object and 9 for indicating the object’s spatial
location in the retina). In all architectures each input unit is connected with all the
hidden units. What can vary from an architecture to another are the connections
between the hidden units and the output units. The portion of the genotype which
encodes the network architecture contains 18 genes, one for each hidden unit. Each
of these architectural genes has three possible values that specify if the
corresponding hidden unit is connected (a) to all the What output units, (b) to all the
Where output units, or (c) to both the What and the Where output units. The third
possibility, (c), is included to allow for the evolution of nonmodular architectures.
The other part of the genotype encodes the connection weights and it includes one
gene for each possible connection weight (weight genes). The weight genes are 774
because there is a maximum of 774 connection weights in a nonmodular network.
Modular architectures have less than 774 genes and in this case some of the weights
may remain unexpressed. The weight genes are encoded as real numbers.

At the beginning of the simulation a population of 100 individuals is created and
each individual possesses a genotype with random values for both the architectural
and the weight genes. The values of the weight genes are randomly chosen in the
interval between -0.3 and +0.3. Each individual is presented with the 81 input patterns
of the What and Where task and an individual’s fitness is greater the lower its
summed squared error on these patterns. The 20 best individuals are selected for
reproduction. Each of these individuals generates 5 offspring which inherit the
genotype of their single parent with the addition of some random mutations. The
architectural genes are mutated by replacing the value of a gene with a new randomly
chosen value with a probability of 5%. The weight genes are mutated by adding a
quantity randomly chosen in the interval between -1 and +1 to 10% of the genes. The
simulation is terminated after 10,000 generations. Ten replications of the simulation
were run with randomly chosen initial conditions.

The results of the experiment show that the genetic algorithm is unable to solve
the What and Where task if both the architecture and the connection weights are
subject to evolution and are genetically inherited. The total error is about 40 after
10,000 generations. In Rueckl et al.’s simulations using the backpropagation

procedure the terminal error is practically zero for the best architecture. While the
performance in the Where task is good enough but not as good as in Rueckl et al.
(error = 7), the performance in the What task is very poor (error = 33).

These negative results appear to be caused by the difficulty on the part of the
genetic algorithm to evolve an appropriate set of weights if the network architecture
is evolving at the same time. Each architecture has its own appropriate set of weights
and, therefore, changing an architecture can be destructive from the point of view of
the weights. A given set of weights which is appropriate for a given architecture may
be completely inappropriate if the architecture changes. In our simulations the
genotype specifies the weights of all possible connections even if some of these
connections are not expressed in the phenotype. Therefore, when an unexpressed
connection get expressed as a result of a mutation, its value is not zero. But adding
even a single connection with its value already specified can destroy the equilibrium
of the connectivity pattern. The same applies if the weight value of the new
connection is randomly generated or if a previously expressed connection is
canceled by a mutation together with its connection weight.

This interpretation is supported by the results obtained by manipulating the
mutation rate. If the mutation rate of the network architecture is increased (10%), the
final error increases (60). If it is reduced (1% and even 0.1%) the final error decreases
although it never approaches zero (25 for 1% mutation rate; 22 for 0.1% mutation
rate).

However, the bad results of these simulations may be due to another reason in
addition to the disruption caused by the addition or deletion of connections with
their weight value. One would expect that the network architecture that eventually
evolves is the architecture that Rueckl et al. [13] have found is the best architecture,
that is, an architecture with more hidden units dedicated to the more complex What
task than to the simpler Where task. This is not the case in our simulations. Although
the genetic algorithm does evolve modular architectures (on the average only about 2
hidden units are connected to both the What output units and the Where output
units), the network architecture which tends to evolve has more hidden units
assigned to the Where task than to the What task. It is not surprising then that the
networks' performance on the total task is not good.

The reason for the failure of the genetic algorithm to evolve the appropriate
modular architecture seems to be that in the initial generations the algorithm
concentrates on the easier task, the Where task, and dedicates many computational
resources (hidden units) to this task. When the performance on this task is almost
perfect, however, the algorithm is unable to shift computational resources from the
Where task to the more difficult What task. More specifically, in the earlier
generations the individuals that are selected for reproduction are those that are good
at the Where task even if they are not very good at the What task. These individuals
tend to have network architectures with more hidden units assigned to the Where
task (which decides if they reproduce or not) than to the What task. When in the
later generations competition becomes harsher and selection would reward
individuals that are good both at the Where task and at the What task, the random
genetic mutations are unable to modify a situation in which most hidden units are

already assigned to the Where task and evolution is unable to produce individuals
that are good at both tasks.

Runs Where What Both Where What Total
1 15.8 0.7 1.5 5.5 39.1 44.7
2 6.0 5.1 6.9 4.8 28.7 33.4
3 3.2 11.3 3.5 9.9 27.3 37.1
4 7.2 9.4 1.4 8.9 27.6 36.6
5 16.4 0.3 1.3 5.8 42.2 48.0
6 8.0 5.4 4.5 6.4 31.1 37.4
7 6.9 10.8 0.3 7.5 25.6 33.0
8 8.0 6.5 3.5 8.4 28.6 37.0
9 14.8 2.1 1.1 5.9 41.0 46.9
10 14.8 2.4 0.7 8.2 44.3 52.6

Hidden units Error

Table 1: Number of hidden units allocated to the Where task, to the What task, and
to both tasks, and error on the Where task, the What task, and total error for each of
10 replications of the simulation (average of 100 individuals for each replication). In 3
replications (bold face) more hidden units are allocated to the What task than to the
Where task and still the performance is not good.

However, even this may not be the entire story. If we look at Table 1, we see that

at least in some replications of the simulation (3 out of 10) more hidden units are
correctly dedicated to the What task rather than to the Where task. But even in these
replications of the simulation the error on the What task, and therefore also the total
error, remains quite high. Hence, the failure of the genetic algorithm to produce
efficient networks for the What and Where task appears to be due to its inability to
select the appropriate connection weights even for networks which have the
appropriate modular architecture.

This may reveal a general inability of genetic algorithms of the type we used in
our simulations to evolve the appropriate connection weights for modular networks.
We have run an additional set of simulations (not reported here) in which the genetic
algorithm tries to find the appropriate connection weights given a fixed modular
architecture of the appropriate type, with little success. The reason seems to be that,
since the connection weights of different modules are separately encoded in the
genotype, a favourable mutation of the connection weights of one module can be
accompanied by a nonfavourable mutation of the connection weights of another
module, with little total advantage. This seems to be a form of genetic linkage. Either
the individual in which the two mutations occur is selected for reproduction - and in
this case the nonfavourable mutation in the second module becomes part of the
population’s pool -, or the individual is not selected for reproduction - and in this
case the favorable mutation in the first module is lost.

3.2 Using the Genetic Algorithm to Evolve the Network Architecture
and the Backpropagation Procedure for Learning the Connection
Weights

Perhaps, then, the solution to the various problems we have seen in the simulations
described so far is to use the genetic algorithm to evolve the appropriate network
architecture at the population level and the backpropagation procedure to have each
individual network learn the connection weights for its inherited network architecture
during life. We have run a second set of simulations in which the inherited
genotypes encode a variety of possible network architectures but the genotype does
not encode the connection weights. The connection weights are not genetically
inherited but they are learned during life. At birth each individual is assigned a
random set of weights for the particular network architecture it inherits and then the
individual learns to do the What and Where task exactly as in the Rueckl et al.’s
simulations. At the end of learning the terminal error of each individual determines
the individual’s reproductive chances.

Where What Both Where What Total
4.7 12.2 1.1 0.0 1.6 1.6

Hidden units Error

Table 2: Number of hidden units allocated to the Where task, to the What task, and
to both tasks, and error on the Where task, the What task, and total error for the
average individual in the last generation (average of 10 replications of the
simulation).

The results are that, first, at the end of the simulation the terminal error is near
zero for both the What and the Where tasks - even if it is still somewhat larger for the
What task - and, second, the evolved network architectures tend to be the optimal
architectures with more hidden units dedicated to the What task than to the Where
task (Table 2).

4. Discussion

A neural network that must acquire a capacity to do more than one tasks is better
able to acquire this capacity if the network architecture is modular because neural
modules prevent the occurrence of neural interference, defined as the arrival of
contradictory messages during learning for changing the value of connection
weights involved in more than one task. Neural modules contain connection weights
involved in only one task and therefore they avoid neural interference.

Neural modules can be hardwired by the researcher or they can spontaneously
emerge during development or evolution. Using the genetic algorithm as a model of
biological evolution we have simulated the evolution of network architectures that
are appropriate for recognizing both the identity and the spatial location of perceived

objects. Modular and nonmodular architectures compete in the successive
generations of a population of neural networks and modular architectures should
emerge as the winning ones.

We have compared two conditions, one in which both the network architecture
and the connection weights evolve and are genetically inherited and another one in
which only the architecture evolves and is inherited while the connection weights are
learned during an individual’s life. Only the second condition produces satisfying
results, that is, the appropriate modular architecture and high levels of performance in
the task. If both the architecture and the connection weights are encoded in the
genotype, a change in the network architecture with the addition or deletion of even
a single connection can suddenly make a set of weights that has evolved with the
preceding architecture inappropriate. Furthermore, evolution may not be the best
method for evolving the connection weights for modular networks because a
favorable genetic mutation in one module may be accompanied by an unfavorable
mutation in another module, although sexual recombination or genetic duplication [3]
might help solve this problem.

As suggested by various authors (see, for example, [2]), cooperation between
evolution and learning can be the best solution to the problem of acquiring complex
capacities, compared with having either evolution or learning completely take care of
the problem. However, it is not only that evolution and learning must cooperate and
both have a role in the acquisition process but the best solution might be to have
evolution take care of the network architecture and learning of the connection
weights. Hence, the network architecture is genetically inherited but the connection
weights are not. They are learned during life. (This solution has been proposed on
the basis of more general considerations by Elman et al. [5]).

One should not, however, overemphasize this particular type of division of labor
between evolution and learning. A number of other arrangements may exist that
maintain the general scheme of entrusting the network architecture to evolution and
the connection weights to learning but distribute the details of this scheme
differently. For example, the initial connection weights can be encoded in the
genotype and then learning modifies these initial weights. It has been shown that the
initial weights influence learning [9] and that evolution may find out what are the best
initial weights for learning some particular task (see, for example, [1]). Other schemes
may involve the genetic encoding not of the actual connection weights themselves
but only of various constraints on the connection weights. For example, whether
some particular connection weight is positive (excitatory) or negative (inhibitory)
may be encoded in the genotype but it is learning that finds out what is the most
appropriate absolute value for the weight. Or the range of variation of the value of
some weight may be encoded in the genotype, but the actual value within this range
is identified by learning. Or, again, evolution can find the appropriate learning
parameters and learning the actual weight values [6]. On the other side, learning can
change an inherited network architecture by adding and/or deleting connections (cf.
the pruning and tiling algorithms [12]). However, it could still be the general case that
evolution identifies the general layout of a species’ brain and learning refines what is
inherited by adjusting the weights on the brain’s connections.

References

1. Belew, R. K., McInerney, J., & Schraudolph, N. (1991). Evolving networks: using
the genetic algorithm with connectionist learning. In C. G. Langton, C. Taylor, J.
D. Farmer, & S. Rasmussen (eds), Artificial Life II. Addison-Wesley, Reading,
MA.

2. Belew, R. K. & Mitchell, M. (1996). Adaptive Individuals in Evolving
Populations. Addison-Wesley, Reading, MA.

3. Calabretta, R., Nolfi, S., Parisi, D. & Wagner, G. P. (2000). Duplication of modules
facilitates the evolution of functional specialization. Artificial Life 6:69-84.

4. Cangelosi A., Parisi D. & Nolfi S. (1994). Cell division and migration in a
'genotype' for neural networks. Network 5:497-515.

5. Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D. &
Plunkett, K. (1996). Rethinking innateness. A connectionist perspective on
development. The MIT Press, Cambridge, MA.

6. Floreano, D. & Urzelai, J. (2000). Evolutionary robots with on-line self-
organization and behavioral fitness. Neural Networks 13:431-443.

7. Jacobs, R. A., Jordan, M. I. & Barto, A. G. (1991). Task decomposition through
competition in a modular connectionist architecture: The what and where vision
tasks. Cognitive Science 15:219-250.

8. Jacobs, R. A. & Jordan, M. I. (1992). Computational consequences of a bias
toward short connections. Journal of Cognitive Neuroscience 4:323-335.

9. Kolen J. F. & Pollack, J. B. (1990). Back-propagation is sensitive to initial
conditions. Complex Systems 4:269-280.

10. Murre, J. M. J. (1992). Learning and categorization in modular neural
networks. Harvester, New York, NY.

11. Plaut D. C. & Hinton, G. E. (1987). Learning sets of filters using back-
propagation. Computer Speech and Language 2:35-61.

12. Reed, R. D. & Marks II, R. J. (1999). Neural Smithing. Supervised Learning in
Feedforward Artificial Neural Networks. The MIT Press, Cambridge, MA.

13. Rueckl, J. G., Cave, K. R. & Kosslyn, S. M. (1989). Why are “what” and “where”
processed by separate cortical visual systems? A computational investigation.
Journal of Cognitive Neuroscience 1:171-186.

14. Ungerleider, L. G. & Mishkin, M. (1982). Two cortical visual systems. In D. J.
Ingle, M. A. Goodale & R. J. W. Mansfield (Eds.), The Analysis of Visual
Behavior. The MIT Press, Cambridge, MA.

