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Abstract
The existence of modules is recognized at all levels of the
biological hierarchy. In order to understand what modules are,
why and how they emerge and how they change, it would be
necessary to start a joint effort by researchers in different
disciplines (evolutionary and developmental biology,
comparative anatomy, physiology, neuro- and cognitive
science). This is made difficult by disciplinary specialization.
In this paper we claim that, because of the strong similarities
in the intellectual agenda of artificial life and evolutionary
biology and of their common grounding in Darwinian
evolutionary theory, a close interaction between the two fields
could easily take place. Moreover, by considering that
artificial neural networks draw an inspiration from neuro- and
cognitive science, an artificial life approach to the problem
could theoretically enlarge the field of investigation. The
present work is the first one in which an artificial life model
based on neural networks and genetic algorithms is used to
understand the mechanisms underlying the evolutionary
origin of modularity. An interesting problem that we will
address in this paper is whether modules that start as repeated
elements because of genetic duplication can develop to
become specialized modules. A linear regression statistical
analysis performed on simulation data confirms this
hypothesis and suggests a new mode for the evolution of
modularity.

Introduction
Various disciplines concerned with the study of organisms
and their behavior find it useful to refer to ‘modules’ as
components that play identifiable roles in systems at
various levels and tend to maintain their identity over time.
Although nonmodularity may also play a part in biological
structure and function, the existence of modules is
recognized at all levels of the biological hierarchy. The
‘modularity of mind’ is a well-known assumption of
symbol-manipulation models of cognition. The mind is
seen as composed by a multiplicity of modules that are
specialized for various behavioral capacities and areas of
activity. Neuroscientists recognize in the brain various
types of units above the cellular level: columns, areas,
systems, etc. In fact the total architecture of the brain
appears to be a mosaic of interacting components with
structural and functional specialization. Geneticists
subdivide the DNA chain into genes that code for proteins
and control the genotype-to-phenotype mapping. Modules

are also recognized at levels lower and higher than the gene
level. At a lower level, genes are composed of triplets
(codons) of bases (adenine, tymine, cytosine, guanine and
uracil), each of which codifies for a specific amino acid. At
a higher level, each gene codifies for a specific protein. The
sequence of amino acids for each protein, as it is codified
exactly in DNA, contains all the information to determine
the three-dimensional structure on which the function of
that protein finally depends (see for instance Creighton
1993 and Calabretta, Nolfi, and Parisi 1995). As stressed
by Doolittle and Bork (1993), proteins are often composed
by a limited group of modular elements (domains) that
have spread and multiplied during evolution in ways that
are starting to be understood. At the phenotypic level
evolutionary biologists recognize homologous and
analogous phenotypic traits in organisms belonging to
different species or higher taxa, and repeated components
in individual organisms, such as vertebrae in mammals (see
Futuyma 1998, p. 669).

Given the postulated existence of modules at all these
levels and their importance for describing and explaining
both structure and process at each level, it is critical to
understand what modules are, why and how they emerge,
how they change, etc. To achieve this understanding it
appears to be crucial to be able to coordinate modules
existing at different levels of the biological hierarchy and
to understand how modules at one level are related to those
at other levels. This is made difficult by disciplinary
specialization. The sheer amount of detailed empirical data
that must be taken into consideration at each level, the
heterogeneity of theoretical vocabularies and empirical
methods used to study phenomena at different levels, and
the great complexity of the between-level mappings, make
it very difficult to clarify the relationships among modules
at different levels in real organisms.

One possibility, then, is to study these problems in
artificial organisms. Artificial Life studies all kinds of
biological phenomena as they occur in artificial organisms
and it can help us overcome many of the difficulties
encountered in trying to relate modules at different levels.
First, artificial organisms are simpler than real organisms.
Second, simulations of biological phenomena at different
levels can adopt a unified theoretical framework to
facilitate inter-level conceptual dialogue. Finally, the



computer is a very powerful research instrument that
allows us to observe and manipulate complex phenomena
and nonlinear interactions among large number of entities
at each level and between levels.

In this paper we adopt an Artificial Life approach in the
hope that this approach can shed some useful light on
modules at different levels and how they are related to each
other.

Previous work
Research in the field of neuro- and cognitive sciences tends
to assume that human cognitive process are accomplished
by means of specialized modules (see e.g., Moscovitch and
Umiltà 1990, Fodor 1983; for a critique of Fodor’s point of
view see Karmiloff-Smith 1992). Cowey (1981) and Kaas
(1989) ask why the brain has so many visual areas. Ballard
(1986) suggests that a limitation on the number of neurons
compels the brain to adopt a modular architecture. Stevens
(1994) maintains that «the complexity of human brain
arises not from the complexity of its basic processing
elements (the cortical module), or the richness of
connections between modules, but simply in the number of
the modules present». (For some connectionist simulations
of modularity, see Jacobs, Jordan, and Barto 1991 and
Rueckl, Cave, and Kosslyn 1989).

Even if the recognition of the existence and importance
of modularity has a long historical tradition, there is little
understanding of how modularity has originated.
Evolutionary biologists ask whether modularity is an
inherent property of organisms and thus not the result of
evolution or it is the result of selection shaping the
genotype-phenotype mapping function (see for instance
Wagner 1995). The evolutionary implications of modular
organization for development have been described by John
Bonner in his book on the evolution of complexity (Bonner
1988). Modularity would allow the adaptation of different
functions with little or no interference with other functions.
Several population genetic models have been suggested in
order to explain the evolutionary origin of modular design
(e.g., Wagner and Altenberg 1996; Wagner 1996;
Altenberg 1995) but our current knowledge is insufficient
to assess the plausibility of these models.

In the field of Artificial Life, some researchers have tried
to exploit modular design for improving the performance of
various artificial systems such as artificial neural networks,
evolutionary algorithms, and robots. Gruau (1994) applies
a genetic algorithm to the synthesis of neural networks
using cellular encoding as a new technology. This
technology «can automatically and dynamically decompose
a problem into a hierarchy of sub-problems, and generate a
neural network solution to the problem. The structure of
this network is a hierarchy of sub-networks that reflect the
structure of the problem.» Snoad and Bossomaier (1995)
consider «how genetic algorithms (GAs) and artificial
neural networks (ANNs) (connectionist learning models)
complement each other and how combining them (i.e.
evolving artificial neural networks with a genetic
algorithm), may give insights into the evolution of structure
and modularity in biological brains.» Cho and Shimohara

(1997) investigate «the emergence of structure and
functionality of modular neural networks trough
evolution.» The model they present is applied to a visual
categorization task with handwritten digits.

In order to evolve neural controllers for mobile robots,
Nolfi (1997) describes a modular neural network
architecture that clearly outperforms other architectures in
performing a garbage-collecting task (see below). This
architecture is called an ‘emergent modular architecture’
because although modules are available from the beginning
it is evolution that decides whether to use them or not by
breaking down the required behavior into sub-components
corresponding to different neural modules. In the present
work we use the same simulation scenario of Nolfi (1997)
but we add the genetic operator of gene duplication in order
to explore the relationship between the evolutionary
emergence of modularity and the phenomenon of gene
duplication.

To our knowledge, the present work is the first one in
which an artificial life model based on neural networks
(Rumelhart and McClelland 1986) and genetic algorithms
(Holland 1992) is specifically used to understand the
mechanisms underlying the evolutionary origin of
modularity.

Duplication-based modules
In the present paper we are concerned with modules that
play a role in the genotype-to-phenotype mapping. More
specifically, we are interested in the evolution of modules
at the genetic level that map into single functions at the
behavioral level of the entire organism. Mappings from
genes to higher functions can be modular or nonmodular
(Wagner and Altenberg 1996). The mapping is modular
when there are few pleiotropic effects among characters
serving different functions, with pleiotropic effects existing
mainly among characters which serve one and the same
function (Figure 1, right). (Pleiotropy is «the influence of
the same genes on different characters», Futuyma 1998).
On the contrary, we have a nonmodular mapping when
there are pleiotropic effects both among characters serving
different functions and among characters serving a single
function (Figure 1, left). Therefore, modules can be defined
as a collection of characters at different levels that are all
responsible mainly for a single function. Put simply, in the
genes-to-behavior mapping a module can be defined as a
collection of genes which produce a set of molecules which
in turn are responsible in the regulation of the nervous
system serving a given behavioral function. Notice how
this definition of module is more constrained than others.
Neuro-physiologists, for instance, in defining a module
take into account the nervous system and the higher level
of organization (behavior) which is the result of the activity
of the nervous system. However, they do not usually take
into consideration lower levels such as the molecular and
genetic level. They do not ascertain that what they have
identified as a neural module is the result of a collection of
genes that mainly codify for that phenotypic character. If
we take an evolutionary perspective, however, the
genotype level plays a very important role because it is at



Figure 1. Examples of nonmodular and modular genotype-to-phenotypes mapping. Complexes of phenotypic characters {A, B, C} and {D,
F, G, H} serve behavioral functions F1 and F2, respectively. The genetic representation is modular in the case to the right because some
genes (i.e., {G1, G2, G3}) have primarily pleiotropic effects on the first set of characters (C1) supporting behavioral function F1 whereas
other genes (i.e., {G4, G5, G6}) have primarily pleiotropic effects on the characters (C2) subserving function F2. The left case is
nonmodular because there are about the same amount of pleiotropic effects on the characters subserving both functions. (Figure redrawn
from Wagner and Altenberg 1996).

this level that novelties are produced through mutation,
recombination, and selection.

Modules can be seen as specialized components and,
therefore, different from each other, or they can be
recognized as repeated identical elements. An interesting
problem that we will address in this paper is how the two
types of modules are related. In particular we will ask if
modules that start as repeated elements because of genetic
duplication can develop to become specialized modules.

Wagner and Altenberg (1996) stressed that «although
modularity may sometimes be intrinsic to the mechanism
of an organismal function, in many cases, especially
development, modularity appears to be an evolved
property.» A possible mechanism of morphological
innovation is the differentiation of repeated elements
(Müller and Wagner 1991; Ohno, 1970; Weiss 1990), for
instance the differentiation of metameric segments at the
origin of insects (see for instance Akam, Dawson, and Tear
1989). Various authors have stressed the role of genetic
duplication for the emergence of evolutionary novelties,
especially in complex organisms. Li (1983) claims that
«gene duplication is probably the most important
mechanism for generating new genes and new biochemical
processes that have facilitated the evolution of complex
organisms from primitives ones». Tautz (1992) argues that
«redundancy of gene actions may [...] be a necessary
requirement for the development and evolution of complex
life forms» and in fact «redundancy seems to be
widespread in genomes of higher organisms» (Nowak et al.

1997). In the neutral theory of molecular evolution
(Kimura 1983), the duplication relaxes the selective
constraints on one of the two copies allowing the
accumulation of mutations leading to the emergence of a
new function (Coissac, Maillier, and Netter 1997; see also
Ohta 1989).

In the present work we present simulations of the
evolution of populations of artificial organisms focusing on
the evolutionarily emergence of functionally different
modules at the neural-behavioral level from gene
duplication.

A typical Artificial Life simulation addressing problems
at the behavioral level involves a population of organisms
living and reproducing in an environment. The behavior of
each individual organism is controlled by a neural network
that encodes the state of the local environment in its input
units and some movement of the organism in its output
units. Each individual has an inherited genetic code that
specifies (some of) the properties of the individual’s neural
network and, therefore, of the individual’s behavior. The
individuals that inherit better neural networks tend to
behave more efficiently and are more likely to leave
offspring. The genetic code is inherited with random
mutations and/or sexual recombination of parts of the
genetic code of one parent and parts of that of the other
parent. The resulting offspring are in many cases worse
than their parents but, although infrequently, they can
represent an improvement over their parents. The selective
reproduction of the best individuals and the constant



addition of variability through mutations and/or sexual
recombination make it possible to observe evolutionary
change in the population at three levels: genetic, neural,
and behavioral (Miglino, Nolfi, and Parisi 1996).

We compare two populations. In both populations neural
modules start as reduplications in the genetic code and they
evolve their connection weights during the evolutionary
process. In one population the genetic code is hardwired
from the beginning for coding for two distinct neural
modules for each separate aspect of the network’s output.
In principle each of the two modules can control the same
network’s output. In the other population the emergence of
distinct modules becomes an adaptive process in the sense
that the genetic code includes a ‘reduplication gene’ that
can be turned on at some point during the evolutionary
process. An important difference between the two
populations is that in the first population the two alternative
neural modules controlling the same network’s output both
start from zero, i.e., from random connection weights, and
they must evolve their connection weights in parallel to
become specialized for different tasks, whereas in the
second population a duplicated module starts with the
weights already evolved for the first module and must then
adapt these weights to differentiate and specialize with
respect to the first module. We will call the first type of
modules «hardwired» and the second type of modules
«duplication-based».

The two populations are compared with respect to how
much modules at the genetic level map into meaningful
units at the behavioral level. More specifically we want to
test the prediction that modular architectures that originate
in genetic duplication tend to have modules corresponding
to meaningful behavioral units more often than
architectures with hardwired modules.

Let us explain what it is for a module to correspond to a
meaningful behavioral unit. Imagine a population of
organisms (robots) living in a walled environment that
contains a certain number of objects. The task for these
organisms is to grasp the objects with their ‘arms’ and to
release the objects over the peripheral wall outside the
environment. The entire behavioral sequence that allows
the organisms to accomplish this task can be divided up
into a hierarchy of meaningful units. At the highest level of
the hierarchy the sequence can be divided into two units:
grasping an object and releasing the object beyond the wall.
At the next lower level, in order to grasp an object the
organism must find the object and in order to do so it must
discriminate the object from the peripheral wall, approach
and reach the object. At the lowest level the organism must
explore the environment until it perceives an object. Also
releasing the object on the other side of the wall can be
divided into subsegments: avoid and ignore the other
objects (since only one object can be grasped by the
organism’s arms), reach the wall, open the arms to release
the object beyond the wall. Each of these segments is a
meaningful behavioral unit. Our question is whether neural
modules specialize for these units in the sense that different
modules are used when a particular behavioral unit must be
executed. We believe that this may be so for modules that
emerge from genetic duplication and represent evolutionary

specializations of already existing and functional modules
whereas hardwired modules tend to be less clearly
associated with meaningful behavioral segments.

Simulations
We ran a set of simulations in which two different
populations of neural networks are trained to control a
mobile robot designed to keep an arena clear by picking up
trash objects and releasing them outside the arena. The
robot has to look for 'garbage', somehow grasp it with its
arms, and take it out of the arena.

The robot is a miniature mobile robot called Khepera,
developed at E.P.F.L. in Lausanne (Mondada, Franzi, and
Ienne 1993). The robot is supported by two wheels that
allow it to move in various directions by regulating the
speed of each wheel. In addition, the robot is provided with
a gripper module with two degrees of freedom. The two
arms of the gripper can move through any angle from
vertical to horizontal while the gripper can assume only the
open or closed position. The robot is also provided with six
infrared proximity sensors positioned on the front of the
robot and an optical barrier sensor on the gripper capable of
detecting the presence of an object between the two arms of
the gripper. The infrared sensors allow the robot to detect
obstacles to a distance of about 4 cm. The environment is a
rectangular arena 60x35 cm surrounded by walls and
containing 5 objects. The walls are 3 cm in height and the
objects are cylinders with a diameter of 2.3 cm and a height
of 3 cm. The 5 objects are positioned randomly inside the
arena. To speed up the evolutionary process a simulator of
the physical robot and environment was used (see Nolfi
1997).

The basic network architecture is identical in the two
populations (see Figure 2). The architecture includes 7
input units directly connected to 4 output units, each with
its associated bias, for a total of (7x4)+4=32 connections.
Six of the 7 input units continuously encode the activation
level of the 6 infrared sensors while the seventh input unit
binarily encodes whether (1) or not (0) there is an object
between the two arms of the gripper. Two of the 4 output
units continuously encode the speed of Khepera’s two
wheels. The remaining 2 output units binarily encode
whether (1) or not (0) each of two procedures are executed
by the robot: one output unit encodes the procedure of
picking up an object and the other unit the procedure of
releasing the object.

The two populations differ in the type of modularity that
enriches this architecture (see Figure 2). In one population
the architecture of all individual organisms includes two
modules for each of the 4 output units since the beginning
of evolution. More specifically, the architecture has two
copies for each of the 4 output units, with each copy
receiving its own set of connections from the input units.
Which of the two alternative output units actually controls
the robot’s behavior in each particular input/output cycle is
decided in the following way. Each copy  of an output unit
has associated with it a special unit called a ‘selector’ unit
that receives connections from all the input units and has its
own bias. In each cycle the simulator ascertains which of



Figure 2. Modular neural network architecture of the two
populations. The basic architecture is identical in the two
populations. The two populations differ in the type of modularity
which is added to this basic architecture. In one architecture two
modules compete to gain control of each of the four actuators in
all individuals since the beginning of evolution. In the second
population the individuals of the initial generation have only one
module for each motor. A second competing module may be
added in individuals of later generations as a result of the
duplication operator (see below). Another difference is that in the
first population competing modules have different random
weights at the beginning while in the second population when a
second competing module is generated, the two competing
modules have identical weights.

the two selector units is more activated and it uses the
output unit corresponding to the more highly activated
selector unit to determine the organism’s behavior. One
copy of each output unit, with its associated connections,
plus its selector unit with its associated connections,
constitute a module. For each output unit, therefore, there
are two alternative modules that compete for controlling
the organism’s behavior and it is the input from the
environment that ultimately decides which of the two
alternative modules control the robot’s behavior.

A genetic algorithm (Holland 1992) was used to evolve
the connection weights of such neural networks. In the first
population the genotype encodes the values for all the
connection weights of the modular architecture. Since each
module includes 7x2 connections plus 2 biases and there
are 8 modules, the total number of connection weights
encoded in the genotype is 128. Since each weight value is
binarily encoded using 8 bits, the total genotype is a
sequence of 128x8=1024 bits. The individuals of the first
generation are assigned random values for these 1024 bits
and then the evolutionary process progressively finds better
and better genotypes on the basis of the selective
reproduction of the best individuals and the addition of
random mutations to inherited genotypes. Each generation
includes 100 individuals. At the end of life the 20 best
individuals are selected for reproduction and each of these
individuals generates 5 offspring, that is, new individuals
with the same genotype of their parent (reproduction is
nonsexual). Genetic mutations consist in changing the
value of about 10 bits in each genotype (1% mutation rate).
The 20x5=100 new individuals constitute the second
generation. The process is repeated for 1000 generations.

In the second population the genotypes of the initial

generation encode random values for the connection
weights of the single modules of the basic architecture : 32
(7x4=28 plus 4 biases) connections. However, since each
of the 4 output units has associated with a nonfunctional
selector unit with its 7 connection weights, the total number
of connection weights encoded in the genotypes of the
initial generation is 64. Notice however that until the
module is not duplicated this selector unit remains
completely nonfunctional and its associated connection
weights are subject to random drift only. The genotype of
this second population has 4 additional ‘duplication genes’
each associated with one of the 4 output units. When one of
these duplication genes is turned on by some mutation the
gene duplicates its corresponding module assigning to the
duplicated module the same weight values of the original
module. The duplication genes cause a duplication with
some probability that we have varied in various simulations
(i.e., 0.04%, 0.03% and 0.02% of the modules were
duplicate in different simulations). In the generation in
which the duplication of some module occurs there is no
possible change in behavior since both alternative modules
have the same connection weights but subsequently
random mutations acting on the module’s connections
weights (both on those leading to the output unit and those
leading to the selector unit of the module) can
progressively differentiate the two alternate modules. (As
in the first population, we used a mutation rate of 1%).

In conclusion, we have two populations. One population
has a fixed, hardwired modular architecture since the
beginning of the evolutionary process. What we can
determine with respect to this first population is, first,
whether the evolved individuals do actually make use of
the alternate modules as a function of the circumstances or
they only use a single module for all environmental inputs,
and second, in the case they use alternate modules, whether
or not we can attribute a functional meaning to the
modules, i.e., whether or not distinct modules control
meaningful behavioral units. The other population starts
with a nonmodular architecture but it is free to evolve a
modular architecture if that turns out to be adaptive. In the
present model modules can be evolutionarily added to
neural architectures (with a limit of one module for each
motor output) but they cannot be deleted. Hence, because
of purely random reasons the individuals in this second
population will tend to approximate the modular
architecture of the first population, with two alternate
modules for each output unit. However, the modules of the
second population have a different origin than those of the
first population. Not only are they evolved rather than
hardwired but while the modules of the first population all
start with random weights and therefore two alternate
modules for the same output unit both evolve from zero
(random connection weights), the alternate modules in the
second population start with the same weights of the
original modules (since they duplicate these modules) and
therefore with weight values that are already adapted. What
we want to determine is if the different origin and
evolutionary history of modules that arise out of genetic
duplication results in modules endowed with a greater
amount of functional meaning at the behavioral level.



Results
Both populations with modules reach a higher fitness level
than a population with only the basic architecture and no
modules (cf. Nolfi 1997 and Calabretta et al. 1997).
However, the two populations with modules do not differ
in terms of overall fitness except that fitness growth is
slightly slower in the population with duplication-based
modules (results not showed). In order to demonstrate that
modularity plays a critical role, we varied the duplication
rate in the population with duplication-based modules, with
the result that both average and peak performance
decreased linearly with a decreased duplication rate until
the advantage of modular design was lost (see Calabretta et
al. 1997).

We then examined the behavior of a typical evolved
individual with hardwired modularity and a typical evolved
individual with duplication-based modularity and found
that an interesting difference emerged between the two
individuals. While in the hardwired modular individual
there was no correspondence between modules and
meaningful behavioral units (‘distal’ description of
behavior, according to Nolfi’s definition), in the individual
with duplication-based modularity neural modules or,
better, combinations of neural modules turned out to be
responsible for specific meaningful behavioral units (see
Calabretta et al. 1997, figure 5 and figure 6).

In order to extend and reinforce this result we examined
the best individual of the last generation in each of the 10
replications of the simulation for both populations and we
compared the results concerning the statistical relationships
between meaningful behavioral units and the use of the
modules. Specifically, we considered as a meaningful
behavioral unit the fact that the robot had or did not have a
target object on the gripper. We tested the best individuals
of the last generation in 10 different repetitions of the
simulation for both populations. Each individual was
allowed to live for 1 epoch consisting of 500 actions.

For each action we binarily recorded both the state of the
modules (i.e., which of the two available modules for each
motor output was active) and if the meaningful behavioral
unit was being executed or not. For each repetition of the
simulation we calculated the linear regression between
meaningful behavioral unit as a categorical dependent
variable and the state of modules as a categorical
independent variable. As we already have said, we wanted
to test the prediction that modular architectures that
originate in genetic duplication tend to have modules
corresponding to meaningful behavioral units more often
than architectures with hardwired modules.

Table 1 shows the chi-square values for each repetition of
the simulation both in the case of hardwired modularity and
of duplication-based modularity. If we look at the
frequency distribution of chi-square values, two distinct
pictures emerge for the two models (see Figure 3). For the
hardwired modularity model chi-square values are very low
in 8 out of 10 replications of the simulation; more
precisely, these values are less than 20 in 5 replications and
less than 30 in 3 replications (see left graph of Figure 3 and
also Table 1).

Hardwired
modularity's

Duplication-based
modularity's

Seed chi-square values chi-square values
1 11.135 368.662
2 4.679 246.374
3 425.927 495.961
4 2.747 218.359
5 21.556 190.511
6 439.391 55.947
7 16.647 55.246
8 2.348 296.993
9 29.078 32.334

10 27.081 321.769

Table 1. Chi-square values for the single best individuals of the
last generation in each repetition (initial random seed) of the
simulation for hardwired modularity (left) and duplication-based
modularity (right).

In other words, there is a very low correlation between the
meaningful behavioral unit we have selected for
examination and the use of specific modules in 8 out of 10
replications of the simulations (in 4 replications of the
simulations the correlation is not significant at all).
Modules do not appear to be specialized for the specific
meaningful behavioral unit we have considered.
Conversely, for the duplication-based modularity model
chi-square values are very high in 9 of 10 replications of
the simulation; more precisely, they are higher than 100 in
7 replications and higher than 50 in 2 replications (see right
graph of Figure 3 and Table 1). In statistical parlance, the
dependent variable (i.e., the meaningful behavioral unit)
can be said to be a function of the independent variable
(i.e., the state of modules), that is, there is a significant
correlation between the considered meaningful behavioral
unit and the usage of modules in all the 10 replications of
the simulation. (Notice that the degrees of freedom and the
significance values vary in different simulations depending
on how many modules are functional in particular neural
networks). This means that combinations of neural modules
are specialized for the specific meaningful behavioral unit
we have considered and that evolved individuals tend to
use different modules in different environmental situations.
In other words, the prediction that modular architectures
originating in genetic duplication tend to have modules
corresponding to meaningful behavioral units more often
than architectures with hardwired modules appears to be
confirmed by the present results.

Interpretation and Conclusions
The results presented above are suggestive of a new mode
of evolution for modularity. Modularity may critically
depend on the duplication and subsequent divergence of
units that are already partially adapted to some functional
task. This proposed mechanism is thus different from the
combination of directional and stabilized selection on
preexisting characters proposed in Wagner (1996) as well
as from the 'constructional' selection for genes with lower
degrees of pleiotropy proposed by Altenberg (1995).
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Figure 3. Frequency distribution of chi-square values shown in the Table 1, both in the case of hardwired modularity (left)
and of duplication-based modularity (right).

We suggest the following scenario to explain the results of
our simulations. In our model, the evolution of functional
specialization depends on the partial adaptation of the units
prior to the duplication event. We tested this by simulating
the addition of neural units with random connection
weights. The results of these simulations show that this
does not lead to the origin of functionally specialized
modules (results not shown). We assume that prior to
duplication the units serve more than one function. We
further assume that these multiple functions lead to
functional conflicts in the optimization of functional
performance. A duplication of a multi-functional unit then
releases these constraints. Consequently the duplicated
units are free to specialize for one of the functions and a
modular mapping between functions and neural modules
emerges. We are currently undertaking simulations to test
this hypothesis.

This interpretation of our simulation results is similar to
one model of evolution by gene duplication which has been
proposed by Hughes (1994). The standard model, going
back to Ohno (1970), assumes that the gene has only one
function prior to duplication but that after duplication one
copy is free to explore new functional opportunities. It has
been argued that this model is problematic in assuming that
new functions can be acquired by random search, i.e.,
mutation and random drift. An alternative model proposed
by Hughes (1994) assumes that prior to duplication the
gene is serving multiple functions, and that the
performance of these functions is not optimal because of
conflicting adaptive demands. After gene duplication, the
two copies are released from the conflicting functional
demands and each gene copy specializes for one of the
functions of the ancestral gene. This model is supported by
the preponderance of evidence about the functional history
of duplicated genes (Hughes, 1994).

If correct, this interpretation about the origin of functional
modularity raises important questions about the
relationship between evolutionary mechanisms and
evolvability. As emphasized by Bonner (1988) and Wagner
and Altenberg (1996), modular genetic architectures are
superior in their ability to produce functionally improved
mutations. But the question remains whether these genetic

architectures arise because of their impact on evolvability.
There are a number of difficulties associated with the idea
that evolvability arises as an adaptation to evolvability (for
a recent discussion see Steward 1997). Our results further
accentuate these problems, since the mechanism for the
origin of modularity in our model does not derive from or
is related to evolvability. Modularity appears to be a
consequence of the evolution of functional specialization.
Evolvability per se does not seem to be a factor in its
origin. If this interpretation is correct, evolvability has to be
seen as a secondary consequence of adaptation (effect
selection) and not an adaptation to the evolvability of
complex organisms.
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