
Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 1

How to learn multiple tasks

Raffaele Calabretta1, Andrea Di Ferdinando1, Domenico Parisi1, Frank C. Keil2

1 Institute of Cognitive Sciences and Technologies

Italian National Research Council, Rome, Italy
raffaele.calabretta@istc.cnr.it http://laral.istc.cnr.it/rcalabretta

2 Department of Psychology Yale University

New Haven, CT, U.S.A.

Abstract The paper examines the question of how learning multiple tasks interacts with neural architectures and the
flow of information through those architectures. It approaches the question by using the idealization of an artificial
neural network where it is possible to ask more precise questions about the effects of modular versus nonmodular
architectures as well as the effects of sequential vs. simultaneous learning of tasks. While prior work has shown a clear
advantage of modular architectures when the two tasks must be learned at the same time from the start, this advantage
may disappear when one task is first learned to a criterion before the second task is undertaken. Nonmodular networks,
in some cases of sequential learning, achieve success levels comparable to those of modular networks. In particular, if a
nonmodular network is to learn two tasks of different difficulty and the more difficult task is presented first and learned
to a criterion, then the network will learn the second easier one without permanent degradation of the first one. In
contrast, if the easier task is learned first, a nonmodular task may perform significantly less well than a modular one. It
seems that the reason for these difference has to do with the fact that the sequential presentation of the more difficult
task first minimizes interference between the two tasks. More broadly, the studies summarized in this paper seem to
imply that no single learning architecture is optimal for all situations.

Keywords Neural networks, sequential learning, modularity, neural interference, backpropagation, multiple tasks,
genetic algorithms, architecture, What and Where, development.

1. Neural interference

Neural networks are simulation models of the nervous system that can learn to exhibit various types
of behavioral abilities. Real organisms in real environments are confronted with multiple tasks and
therefore their nervous system must be able to learn multiple abilities. However, in most
simulations using neural networks a neural network is trained in a single task and, if one is
interested in studying different tasks, different neural networks are used in different simulations.
Hence, if we want to understand real organisms there is a need for simulations in which one and the
same neural network is trained to exhibit more than a single ability.

Learning many different abilities may pose a problem for neural networks and, presumably, also for
real nervous systems. Abilities in neural networks are incorporated in the network�s connection
weights (LeDoux, 2001). A neural network can be said to possess some particular ability if the
network is able to generate the appropriate output for each of a given set of inputs. Since, for any
given network�s architecture, the particular output with which the network responds to any given
input depends on the nature (excitatory or inhibitory) and quantitative weight of the network�s
connections, the network�s abilities or, more generally, the network�s knowledge may be said to
reside in the network�s connections. When an ability is still not possessed, the state of the network
can be captured by assigning random values to the network�s connection weights. Hence, at this
time the network will not be able to generate the appropriate output in response to each relevant
input. The acquisition of the ability is a process of progressive changes in the network�s connection
weights so that at the end the appropriate connections weights are found, i.e., the connection
weights that allow the network to respond appropriately to the inputs.

mailto:raffaele.calabretta@istc.cnr.it
http://laral.istc.cnr.it/rcalabretta

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 2

The problem of learning multiple tasks is that if one and the same specific connection inside the
network is part of the neural circuit that is responsible for two distinct abilities, it can happen that
acquiring one of the two abilities may require the connection to change its weight in one direction,
for example by increasing the connection�s current weight value, whereas acquiring the second
ability may require the same connection to change its weight in the opposite direction, i.e., by
decreasing the connection�s weight value. We will call this problem �neural interference�: if one
and the same connection enters into the execution of different abilities, acquiring the different
abilities may require changes in the connection�s weight that interfere with each other.

In this paper we examine the problem of neural interference by describing various simulations that
explore the underlying causes of the problem and propose various ways of solving it.

2. Solution 1: Modular networks

One solution to the problem of neural interference is modularity. If a nervous system must acquire
the ability to execute not a single task but two or more different tasks, a modular architecture may
work better than a nonmodular one. In learning two or more tasks with a modular architecture one
particular set of neurons (module) is dedicated to each task so that the synaptic weights of each
module can be adjusted without interfering with the other tasks. In contrast, in a nonmodular
architecture, in which all the synaptic weights are involved in all the tasks, adjusting one weight to
better perform in one task can result in less good performance in other tasks.

Rueckl et al (1989) trained neural networks to learn two different tasks requiring the extraction of
two different types of information from the same input. The network�s input is contained in a
�retina� in which different types of objects can appear, one at a time, in different positions. In each
input/output cycle the network has both to recognize which object appears in the retina (What task)
and to determine what is the position of the object in the retina (Where task). In each input/output
cycle the network has both to recognize which object appears in the retina (What task) and to
determine what is the position of the object in the retina (Where task) (cfr. Ungerleider and
Mishkin, 1982; Milner and Goodale, 1995, 2005; Velichkovsky, 2007). The network has two
separate sets of output units separately encoding the network�s response for the two tasks.

Rueckl et al compared two different architectures, a modular architecture and a nonmodular one
(Figure 1). Both architectures have a single layer of internal units, with the input units connected
with the internal units through the lower connection weights and the internal units connected with
the output units through the higher connection weights. In both architectures the input units that
encode what is contained in the retina are all connected with all the internal units. The difference
between the two architectures lies in the higher connections. While in the nonmodular architecture
the internal units are also all connected with all the output units, i.e., with both the output units that
encode the answer to the What task and the output units that encode the answer to the Where task,
in the modular architecture a subset of the internal units are connected only with the What output
units and the remaining internal units are connected only with the Where output units. Since the
What task is more complex than the Where task (see below), Rueckl et al found that the best
modular architecture is an architecture which assigns a greater number of internal units to the What
task than to the Where task.

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 3

Figure 1. Modular and nonmodular network architectures for learning the What task and the
Where task.

The modular architecture is in fact two separate architectures, with two non-overlapping subsets of
connection weights each dedicated to only one task. Therefore, in the modular architecture there is
no interference between the two tasks. In each cycle, on the basis of the task-specific teaching input,
each connection weight always receives a single message for increasing or decreasing its weight
value without interference from the teaching input for the other task. In contrast, in the nonmodular
architectures the two tasks use two separate subsets of weights at the higher level (connections
between hidden layer and output layer) but they share the same weights at the lower level
(connections between input units and hidden units). Hence, there may be interference between the
two tasks at the level of the lower connection weights in that the same lower connection weight can
receive conflicting messages from the two teaching inputs. The teaching input of the What task may
ask the weight to increase its current value while the teaching input of the Where task may ask the
same weight to decrease its value, or vice versa. This predicts that modular architectures will work
better than nonmodular ones for learning the two tasks.

In fact the results of Rueckl et al�s simulations show that this is the case. Starting from random
connection weights Rueckl et al use the backpropagation procedure to progressively adjust these
connection weights. In each cycle the network is provided with two distinct teaching inputs which
specify the correct answer for the What task and for the Where task, respectively. The network
compares its own answer with the correct answer and on the basis of this comparison it modifies its
connection weights in such a way that the discrepancy (error) between the network�s answer and the
correct answer is progressively reduced. At the end of learning the total error is significantly lower
for neural networks with a modular architecture than for networks with a nonmodular architecture.

As we have said, in Rueckl et al�s simulations the Where task is computationally less complex than
the What task. This depends on the fact that �the difficulty of an input/output mapping decreases as
a function of the systematicity of the mapping (i.e., of the degree to which similar input patterns are
mapped onto similar output patterns and dissimilar input patterns are mapped onto dissimilar output
patterns)� (Rueckl et al., 1989), and systematicity is higher in the Where subtask than in the What
sub-task. As a consequence, in modular networks, that effectively are two separate networks, the
Where task is acquired earlier than the What task although the terminal error is equally low for the
two tasks. In nonmodular networks, the terminal error separately computed for the two tasks is
lower for the Where task than for the What task. The reason appears to be that when, after acquiring
the Where task which is less complex and is learned first, a nonmodular network turns to the more

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 4

complex What task the network�s connection weights that are shared between the two tasks have
already been recruited for incorporating the knowledge about the Where task and, as a consequence,
the What task cannot be acquired as effectively as the Where task.

In Rueckl et al (1989) the network architectures are hardwired by the researcher. Di Ferdinando et
al. (2001) have used a genetic algorithm to evolve the most appropriate network architecture in a
population of neural networks that learn, via backpropagation, the Where task and the What task
during their life (see also Calabretta et al., 2003). An individual network�s architecture is encoded in
the inherited genotype of the network. At the beginning of the simulation a population of random
genotypes is generated resulting in a number of different neural architectures. Each individual
learns the What task and the Where task during its �life� and only the individuals with the best
learning performance are allowed to reproduce by generating a number of �offspring� with the same
neural architecture of their (single) �parent� except for some random mutations in the inherited
genotype. After a certain number of generations most individuals in the population have a modular
architecture with more internal units assigned to the What task and fewer internal units assigned to
the Where task. This confirms that modular architectures are better at learning the two tasks than
nonmodular architectures.

3. Interference occurs especially in the early stages of learning

We interpret the less good performance of nonmodular networks in learning two tasks at the same
time as due to interference, that is, the possible arrival to one and the same connection of conflicting
messages for changing the connection�s current weight value. In backpropagation learning how
much the weight of some particular connection has to be changed is proportional to the error of the
unit to which the connection arrives. This error (E) is the discrepancy between the unit�s observed
and desired activation value:

E = ti - ai (1)

where ti is the desired activation value and ai is the observed activation value.

In general, connections are told to change more substantially their current value when the neural
network�s errors are larger. On the other hand, when the network�s errors are smaller, connection
weights are required to change less. One consequence of this is that the phenomenon of interference
in nonmodular networks is greater when a neural network�s errors are larger and therefore the
network�s connections are asked to change more substantially their weight value. The more a
connection has to change its current weight value, the more serious the interference if the required
changes go in opposite directions. For example, the conflict between a message that asks a
connection to change its weight value by adding 0.1 and another message that asks the same
connection to change its weight by subtracting 0.2 is less strong than the conflict between a
message to add 1.0 and another message to subtract 2.0. In the first case the weight will be
decreased by 0.1, in the latter case by 1.0. Therefore, in the latter case the conflict creates a more
serious problem since the damage with respect to the first task is greater.

If we ask when a neural network�s errors are greater, the obvious answer is that it is in the early
stages of learning. Therefore, we should expect that the phenomenon of interference in nonmodular
networks that have to learn two tasks at the same time will be greater at these early stages. This is
difficult to discern from the summed squared error curve during learning. The summed squared
error (SSE) is the sum of the squared errors of all the output units for all the input patterns:

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 5

SSE = ½ Σ Ei
2 (2)

If we look at the SSE curve, what we see is that the total error of the neural network decreases very
rapidly in the early stages of learning and then much more gradually in the later stages. This in fact
is what we observe in nonmodular networks that learn the What and Where task, as in Rueckl et
al.�s simulations (Figure 2). Notice that these and all the other data shown in this article belong to
our analyses of replications of Rueckl et al.�s simulations.

Figure 2. SSE curve for nonmodular networks that learn the What and Where task. The curve

represents the average of 10 replications of the simulation.

The curve in Figure 2 represents the average of 10 replications of the simulation. If we look at the
curves of the single replications, we observe that in some replications the network succeeds in
learning the task (SSE approaches zero), but in most cases it does not. Again, looking at the SSE
curve we cannot understand why this happens (Figure 3).

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 6

Figure 3. SSE curve for two replications of the simulation with nonmodular networks. In the first
replication SSE approaches zero, in the second replication it remains still large after 300 epochs.

We have the same problem if we graph the average absolute error (AAE), that is, the discrepancy
between the actual activation value of the output units and the desired activation value (with no plus
or minus sign) averaged for all input patterns and for all output units:

AAE = Mean (|Ei|) (3)

Again, we might think that the observed decrease of AAE during learning holds for all input
patterns and for all output units. However, this is not so. This becomes clear if we consider the
single maximum absolute error, that is, the absolute error which is the largest among all absolute
errors of the input/output mappings:

MAE = Max (|Ei|) (4)

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 7

If we separately graph MAE and AAE, we see that while AAE decreases very quickly in the early
learning stages, the value of MAE actually increases, equally quickly, during the early learning
stages approaching its maximum possible value (0.9). In some replications of the simulation, after
the initial increase MAE starts to decrease at some point before it reaches its maximum possible
value (Figure 4a), but in most replications MAE rises very close to its maximum value and then it
does not decrease and is never eliminated (Figure 4b). (Notice that MAE ranges between 0.0 and
0.9 because, following Rueckl et al, we used as training values 0.1 and 0.9.)

Figure 4. Changes in MAE (gray) and in AAE (black) during learning, for two replications of the
simulation with nonmodular networks.

What the graph of Figure 4 shows is that, while the nonmodular network is learning the two tasks,
interference causes three effects: (a) at least one of the network�s outputs becomes entirely
mistaken; (b) this takes place in the very early stages of learning; (c) if MAE gets too close to its
maximum value it becomes hard to eliminate as learning progresses.

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 8

We can now understand the difference between the two replications of Figure 3. In the first
replication MAE doesn�t get too close to its maximum value, and thus the network succeeds in
solving the task, whereas in the second replication it gets too close to its maximum value and the
network is unable to solve the task. The reason why the more the MAE approaches its maximum
value, the more it is hard to eliminate, is that in computing the error signal (ES) of a unit (whether
output unit or internal unit), the backpropagation procedure uses the first derivative of the logistic
function. For example, for an output unit ES (for a given input pattern) is computed as follows:

ES = E x Derivi (5)
where

Derivi = ai x (1 - ai) (6)

where ai is the activation state of the unit. The derivative tends to zero for values of ai that tend to
either 1 or 0. Hence, a unit�s ES tends to zero when the unit�s activation value either tends to 1 or to
0. If, for example, the desired activation value is 1, the unit�s ES tends to zero both when the unit�s
activation state is near 1 (which of course is obvious) and when the activation state is near 0 (which
is less obvious) (Figure 5).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Activation State

E
S

Figure 5. The ES of a unit as function of its activation state.

In other words, rather paradoxically, the formula for computing ES is such that if a unit responds in
a completely mistaken manner, its ES is very small. Therefore, the network modifies the weights of
the connections arriving to that unit by a very small quantity, which is insufficient to eliminate the
error.

As we have already noted, the phenomenon of neural interference occurs especially in the early
stages of learning. Rueckl et al (1989) observe that in the early learning stages nonmodular
networks are more exposed to a pressure to change in order to learn the easier task, the Where task.
After these changes in the network�s connection weights have been made, the second, more
complex, task, the What task, can be learned only �within the confines of the constraints placed on
the hidden node connections by the local computation�, which means that it is too late to learn the
What task.

However, the ES formula does not imply that, once some particular unit responds in a completely
mistaken way, it is impossible to make the unit respond correctly. If the ES for a given unit is very

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 9

small, the weights that determine the unit�s activation state are also changed by very small
quantities, and therefore the learning process can take many epochs. But, at the end, it should be
possible for the learning algorithm to bring even these units with a very mistaken activation state to
their correct activation state. In fact if, instead of discontinuing learning after 300 epochs, as in
Rueckl et al (1989), we continue learning until epoch 10,000, the terminal SSE turns out to be near
zero even for nonmodular networks in all the 10 replications of the simulation (Figure 6).
Therefore, as suggested by our analysis, interference in nonmodular networks that try to learn two
tasks at the same time slows down learning but it does not make learning impossible.

Figure 6. SSE curve for nonmodular networks that learn the What and Where tasks for 10,000
epochs (average of 10 replications of the simulation). Note that the error scale is different than in
the preceding figures.

Another way to avoid the problem shown in Figure 5 is to prevent the activation state of a unit from
reaching extreme values (i.e., 0.999 and 0.001). In this way, the derivative of the logistic function
cannot reach a value very close to 0 and, when the response is completely mistaken, this produces a
bigger modification of the weights, thus reducing the number of epochs needed to solve the two
tasks. In fact, by doing so, we have been able to obtain perfect learning of the What and Where task
even in nonmodular networks in Rueckl et al�s 300 epochs. This method, however, although
efficient, has the limitation that it appears to be tied to the specific learning algorithm used, the
backpropagation algorithm. The method does not eliminate the interference that characterizes
nonmodular networks but it only succeeds in eliminating its negative effects that we have discussed.

As Rueckl et al�s results indicate, interference can be eliminated by using modular networks, in
which distinct set of connections, i.e., modules, take care of separate tasks and therefore it is
impossible that contradictory instructions for weight change arrive to one and the same connection.
(A form of intra-task interference exists also in learning a single task but it is much less strong than
when two tasks have to be learned at the same time. Cf. Plaut and Hinton, 1987.) Consider that the
MAE curve only tells us that at least one output becomes entirely mistaken, but the actual number
of outputs entirely mistaken can be more than one. To quantify the number of output units with an
entirely mistaken activation state, we can introduce a threshold value: when a unit's error (E)

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 10

reaches a value larger than 0.899, the unit's activation state is considered as entirely mistaken.
Using this measure we have determined the number of outputs that are completely mistaken and we
have observed that this number is smaller in modular than in nonmodular networks, i.e., 0.3 vs. 1.9
(see Table 2b). This seems to confirm our analysis in terms of MAE.

Modularity is one way to eliminate neural interference. Another way, which allows even
nonmodular networks to learn two or more tasks, is sequential learning: the network learns the two
tasks not at the same time but one after the other.

4. Solution 2: Learning two tasks one after the other

In all the simulations described sofar neural networks start learning the two tasks, the What task and
the Where task, at the same time. From the beginning of the simulation the performance of the
network in the two tasks is evaluated in each cycle using the two teaching inputs and all the
network�s connection weights are modified accordingly. After 300 cycles the SSE has reached a
stable value which is 0.16 for modular architectures and 0.90 for nonmodular architectures (average
of 10 replications of the simulation with randomly selected initial set of connection weights). This is
the SSE of the network. Since, as we have observed, the What task is more difficult to learn than the
Where task, while for modular networks the two separate components of SSE for the What and the
Where tasks are both very low at the end of the simulation, for nonmodular networks the SSE
component for the What task is significantly higher (0.90) than the SSE component for the Where
task (0.00).

Now imagine that a neural network learns the two tasks not both at the same time but one after the
other. The network starts learning one task, i.e., only the teaching input for this task is provided to
the network. Only after this first task has been learned, i.e., the SSE for the task is near zero, the
second task is introduced and the network starts learning the second task. Notice, however, that
when the network starts learning the second task, the teaching input for the first task continues to be
provided to the network. In other words, when the learning of the second task begins the learning of
the first task is not discontinued.

When this form of sequential learning is applied to modular networks the results are not different
from the case in which both tasks are learned at the same time. As already observed, modular
networks are actually made up of two separate sub-networks (modules) that do not share any single
connection weight (cf. Figure 1). Therefore, whether the two tasks are learned together or
sequentially is irrelevant and the SSE for both tasks goes to zero in both cases. The interesting
question is: can sequential learning allow nonmodular networks to acquire both tasks equally well
and therefore to avoid their handicap with respect to modular networks which is apparent when the
two tasks are learned together?

The answer seems to be Yes. We have trained a nonmodular network by providing the network with
the What teaching input for 100 cycles, omitting the Where teaching input. One hundred learning
cycles are sufficient for the network to reach an SSE value of near zero in the What task. From this
point on, i.e., starting from cycle 101, both the teaching input for the What task and the teaching
input for the Where task are provided to the network. At the end of the simulation (300 cycles) SSE
is 0.04 (average of 10 runs of the simulation). In other words, if the learning of the two tasks is
sequential rather than simultaneous, a nonmodular network can acquire both tasks equally well as a
modular network (terminal SSE: 0.16; the difference between these two conditions is not
significant).

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 11

However, the situation appears to be somewhat more complex. In the simulation just described the
nonmodular network first learns the more complex What task and subsequently the easier Where
task. We have run another simulation in which the order is inverted. The network first learns the
easier Where task and then the more difficult What task. Notice that since the Where task is easier
than the What task the network learns the Where task in just 20 cycles (SSE near zero) compared
with 100 cycles which are necessary to learn the What task. Therefore, the new task, the What task,
is added after only 20 cycles since the beginning of the simulation. At the end of the simulation
(after 300 cycles) the SSE is 0.53 and this error is almost entirely due to the What task which is
learned after the Where task has already been learned. This error is larger than the terminal error for
modular networks (0.16) but smaller than the terminal error the nonmodular networks that start
learning the two tasks at the same time (0.90). Apparently, then, learning two tasks in sequence
rather than at the same time is beneficial for nonmodular networks in all cases but it is better to
learn the more complex or difficult task first and the easier task later than the other way round. With
+equential learning, if the more difficult task is learned first nonmodular networks can learn both
tasks as effectively as modular networks (see Table 1). But if the easier task is learned before the
more difficult task the terminal error turns out to be larger and the second, more difficult, task is not
learned as effectively as in modular networks.

modular nonmodular diff. m/nm
Both 0.16 0.90 signif.
Where -> Both 0.16 0.48 signif.
What -> Both 0.16 0.04 not signif.

Table 1. Error in modular and nonmodular networks, in the three conditions (the data refer to the
average of 10 replications of the simulation). For each of the three conditions, we performed a one
way ANOVA in which the network architecture was manipulated between the seeds (where each
seed corresponds to a different subject).

Notice that in the simulations we have described the two tasks are acquired sequentially but the
learning of the task which is acquired first is not discontinued when the network starts learning the
second task. What happens if the nonmodular network first learns one task and after this task has
been acquired the network starts learning the second task but the teaching input for the first task
ceases to be provided to the network? The answer is catastrophic forgetting (French, 1999). After
300 learning cycles the SSE is 17.15 for the simulation in which the What task is learned first and
then the network learns the Where task, and is 16.65 for the simulation in which the Where task is
learned first and then the network learns the What task. As the literature on catastrophic forgetting
shows, sequential learning is possible only if, after learning the first task, the first task continues to
be rehearsed while the network is learning the second task.

How can we explain the pattern of results we have obtained? Why sequential learning with
rehearsal of the first task allows even a nonmodular network to learn two tasks? Why is learning the
more difficult What task first and then add the simpler Where task better than learning the two tasks
in the opposite order?

The answer is that with sequential learning we are able to reduce, even though not completely, the
neural interference between the two tasks. (Intra-task interference, which however is weaker,
continues to operate). Figure 7 shows how this happens. As explained before, when the network
learns two tasks at the same time, it is in the first stages of learning that interference reaches its
maximum strength because in these first stages the error messages are larger (Figure 7a). On the
contrary, in the first stages of sequential learning there is only one task to be learned, and therefore
there is no interference (Figure 7b). When the first task is learned (SSE approaches zero), the

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 12

second task is added but there is still no interference between the two tasks in that the first task has
already been learned and therefore it does not send any error message (Figure 7c). It is true that
when the learning algorithm starts to modify the weights to learn the second task, the performance
in the first task can somehow decrease. Since the lower connection weights are shared by the two
tasks, the changes in connection weights that result from the teaching input for the second task can
influence the network�s performance on the first task (and vice versa). And, as soon as the
performance in the first task decreases, the first task starts again to send error messages. However,
these error messages will be very small in comparison with those of the second task (Figure 7d). As
learning proceeds, the performance in the first task can continue to decrease for a while, but in the
meanwhile the performance in the second task increases, and therefore the error messages from the
two tasks will never both be very large at the same time and therefore there will never be the strong
interference which occurs when the two tasks are learned at the same time (Figure 7e).

In summary, sequential learning avoids the contemporary presence of two large error messages, and
therefore it reduces, even if it does not eliminate, neural interference. A consequence of this is that,
given that the first task is learned without any interference whereas the second task is learned with
some (reduced) interference, it is better to learn first the more difficult task than the easier task.

…… ……

Task 1 Task 2

a

… … … …

Task 2 Task 1

…… ……

Task 2Task 1

…… ……

Task 1 Task 2

…… ……

Task 1 Task 2

 b c d e

Figure 7. Neural interference between the What task and the Where task in nonmodular network
architecture. The solid lines represent connection weights, while the dotted lines represent error
messages (the thicker is the dotted line, the bigger is the error message). Figure 7a shows an early
stage of simultaneous learning of the two tasks, while Figures 7b, 7c, 7d and 7e show four
succeeding stages of sequential learning (for more details, see text).

Figures 8 show the SSE curve separately for the Where task and for the What task for both the
simulation in which the What task is acquired first and the Where task is added later (Figure 8a) and
for the simulation in which the order of acquisition is reversed (Figure 8b). In both simulations,
when the second task is added after the first task has been learned (SSE near zero) the performance
in the first task is initially somewhat damaged (small increase in SSE) as a result of the introduction
of the new task, but very quickly the damage is repaired and neutralized (SSE is again near zero).

Input layer

Hidden layer

Output layer

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 13

Neural interference occurs during this period. However, for the reasons explained before, its size is
not as big as it would be if the two tasks were learned at the same time. Moreover, neural
interference is bigger when the task which is learned first is the easier task.

0

5

10

15

20

25

0 50 100 150 200 250 300

Epochs

SS

Where What

(a)

0

5

10

15

20

25

0 50 100 150 200 250 300

Epochs

SS

Where What

(b)

Figure 8. SSE curve in nonmodular networks shown separately for the Where task and for the What
task, for both the simulation in which the What task is acquired first and the Where task is added
later (Figure 8a), and for the simulation in which the order of acquisition is reversed (Figure 8b).
The curves represent the average of 10 replications of the simulation. Notice that, given the
architecture of nonmodular networks, changes in connection weights that result from the teaching
input for a task can influence the network’s performance on the other task even if no teaching input

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 14

is provided for the other task. In fact, the lower connection weights are shared by the two tasks so
that a change in these weights affects the network’s performance in both tasks.

We can better understand this last point if we look at MAE. When the easier task is learned first, the
number of outputs which are completely mistaken increases (see Table 2a e 2b).

modular nonmodular diff. m/nm
Both 0,40 2,30 signif.
Where -> Both 0,40 1,40 signif.
What -> Both 0,40 0,10 not signif.

Table 2a. Maximum value of the number of outputs completely mistaken (error larger than 0.899)
in modular and nonmodular networks in the three conditions during learning process (notice that
this value is reached during the early phases of learning). The data refer to the average of 10
replications of the simulation. For each of the three conditions, we performed a one way ANOVA in
which the network architecture was manipulated between the seeds (where each seed corresponds
to a different subject).

modular nonmodular diff. m/nm
Both 0.30 1.90 signif.
Where -> Both 0.30 1.10 signif.
What -> Both 0.30 0.00 not signif.

Table 2b. Number of output completely mistaken (error larger than 0.899) in modular and
nonmodular networks in the three conditions at the end of the learning process (the data refer to the
average of 10 replications of the simulation). For each of the three conditions, we performed a one
way ANOVA in which the network architecture was manipulated between the seeds (where each
seed corresponds to a different subject).

From the comparison of the two tables it can be seen that neural interference pushes some network
outputs to become completely mistaken during the early phases of learning, and that when this
happens it is very difficult for the network to carry back these outputs to the right values.

5. Neural interference and backpropagation.

One could think that our results concerning the effects of neural interference are due to the specific
learning algorithm used, the backpropagation algorithm. In fact, although some of the consequences
of neural interference are specific to the backpropagation learning algorithm, neural interference is a
more general phenomenon that exists every time a neural network has to learn more than one task at
the same time. More specifically:

1- We have seen that the error measure typically used in connectionist simulations, that is, the
summed squared error (and, more generally, all error measures that take into consideration a
network's global performance), does not show the real nature of the error due to neural interference.
This error is not the sum of many small errors distributed on many patterns and many units but it is
rather due to a few large errors distributed on a very few units. This is a general result that also
applies to other algorithms such as the unsupervised genetic algorithm.

2- We have seen that these few but large errors arise during the early stages of learning and tend to
last until the end of learning (compare Table 2a and Table 2b). As we have shown, in the case of the
backpropagation procedure this phenomenon is explained by the fact that a unit�s error signal (ES)

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 15

tends to zero both when a particular unit responds correctly and when it responds in a completely
mistaken way. In this last case learning is very difficult and slow because, as ES is very small, the
network connection weights will be modified by a very small quantity. However, the phenomenon
is not specific to the backpropagation algoritm but is more generally due to neural plasticity and
how it changes during learning. At the beginning of learning all the network�s connection weights
are assigned a quantitative value which is randomly chosen in a very small interval (in our
simulation between plus/minus 0.30). This choice confers an initial large amount of plasticity to the
neural network since the network can improve its performance significantly even by modifying
each time very slightly its connection weights. As is well known, during the course of learning the
absolute value of the connection weights generally tends to increase and therefore neural networks
loose plasticity. If in later learning stages the network's performance is not good, errors will be very
difficult to correct because the network has lost much of its plasticity. This is why early learning
stages are very important.

Given the importance of early learning stages, it becomes critical to find methods that can help a
network to avoid big mistakes during these early stages. To the extent that these errors are due to
neural interference, a way to solve the problem consists in reducing neural interference. There might
be different methods for reducing neural interference, such as introducing new units in the course of learning
or introducing noise. One method we tried, i.e., preventing the activation state of units from reaching
extreme values, does not eliminate interference but it can avoid its negative consequences in the
specific case of the backpropagation procedure. On the contrary, sequential learning is a general
method that can prevent in all cases the negative effects of neural interference.

6. Discussion

Neural interference may prevent a neural network to learn two or more distinct abilities or to learn
them well. Modularity is one way to solve the problem of neural interference. In fact, training
neural networks to exhibit both an ability to recognize the identity of an object and an ability to
recognize the object�s spatial location results in better learning with modular than with nonmodular
networks.

An analysis of neural interference in backpropagation learning shows that neural interference is
greater during the early learning stages. Backpropagation learning implies that connection weights
are told to change, either increasing or decreasing their current weight value, as a function of the
quantitative discrepancy (error) between the actual and the desired activation level of the units that
are activated by them. In the early stages of learning errors tend to be larger and therefore pressures
to change (error messages) have larger absolute value. As a consequence, if one and the same
connection subserves two distinct abilities and there is neural interference between contradictory
instructions to change, the negative effects of neural interference will be greater during the early
than during the later stages of learning. This implies that if a neural network must acquire two
distinct abilities at the same time and the two abilities are of different complexity and take different
time to learn, the less difficult ability will be learned better than the more difficult one.

Are nonmodular networks absolutely prevented from learning two or more distinct abilities? The
answer is no. Another solution to the problem of neural interference is sequential learning.
Sequential learning can allow even nonmodular networks to learn two or more distinct abilities. In
sequential learning a network first learns only a single ability and therefore without interference
from the other ability. When the first ability has been learned, the network starts learning the second
ability. Notice however that when the network starts learning the second ability the network still
receives error messages with respect to the first ability and therefore the learning of the first ability
is not discontinued. Otherwise, if the learning of the first ability is entirely discontinued when the

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 16

network starts learning the second ability, catastrophic forgetting occurs: the second ability is
acquired but the first ability is lost. The reason for catastrophic forgetting is that in a nonmodular
network in which one and the same connection weight may subserve both abilities the changes in
connection weights that are required to learn the second ability tend to disrupt the first ability. This
disruption is avoided if the network continues to receive error messages also with respect to the first
ability which are taken into consideration in deciding how to change the value of the connection
weights. This of course implies that there may be some neural interference between error messages
when the network starts learning the second ability. However, the advantage of sequential learning
is that this neural interference tends to be weak. When a neural network starts learning two distinct
abilities at the same time, i.e., nonsequentially, neural interference tends to be great because both
abilities are in their early learning stages and therefore error messages are quite large for both
abilities. When a network learns two abilities one after the other, there is no neural interference
during the learning of the first ability and, furthermore, neural interference is weak when the
network starts learning the second ability without discontinuing the learning of the first ability. In
fact, what makes learning two tasks at the same time difficult is that in the first stages of learning
error messages are large and therefore in these early stages the network tends to receive potentially
contradictory error messages that are both large. The situation is different if the network learns the
two abilities sequentially. In the first stages of learning of the second ability the error messages for
the second ability will be large but those for the first ability will be small. In the later stages both
error messages will be small. Hence, the negative effects of neural interferences are reduced and the
network can learn both tasks.

This analysis also explains our result according to which in learning two tasks sequentially it is
better to learn the more difficult task first and then the more difficult task, than the other way round.
Task difficulty is reflected in the size of error messages, with more difficult abilities being
intrinsically associated with larger error messages. If the more difficult ability is learned first, this
means that the ability which generates larger error messages can be learned without interference.
Furthermore, when the network starts learning the second, less difficult, ability, this easier ability
will generate for intrinsic reasons smaller error messages and there will be little interference with
the small error messages associated with the already learned more difficult ability.

7. Conclusions

Virtually all organisms of some complexity must learn to do several different things. An organism
might need to learn to recognize several different visual and auditory patterns, to learn where and
when certain events or entities are likely to occur, or to learn how many things occur together.
Sometimes these different learning tasks might occur in different biological substrates, but often the
same neural circuits are learning to do different things. This paper has examined the question of
how the presence of multiple tasks interacts with learning architectures and the flow of information
through those architectures. It has approached the question by using the idealization of an artificial
neural network where it is possible to ask more precisely about the effects of modular versus
nonmodular architectures as well as the effects of sequential vs. simultaneous learning of tasks.

While prior work has shown a clear advantage of modular architectures when the two tasks must be
learned at the same time from the start, this advantage may disappear when one task is first learned
to a criterion before the second task is undertaken. Nonmodular networks, in some cases of
sequential learning, achieve success levels comparable to those of modular networks. In particular,
if a nonmodular network is to learn two tasks of different difficulties and the more difficult task is
presented first and learned to a criterion, then the network will learn the second easier one without
permanent degradation of the first one. In contrast, if the easier task is learned first, a nonmodular
task may perform significantly less well than a modular one.

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 17

It seems that the reason for these difference has to do with the fact that the sequential presentation
of the more difficult task first minimizes interference between the two tasks. Because fewer weight
changes and less overall restructuring must occur when the simpler task occurs second, the network
that has developed to execute the first more difficult task is able to recover from the perturbations
introduced by the second task and reach a criterion level in both tasks. By way of analogy, imagine
that one is trying to learn how to both juggle three balls and ride a unicycle. One can either learn to
juggle first and then add unicycle riding, or learn to ride first and then add in the juggling. The two
tasks clearly interfere and the unicycling is generally much more difficult to master than simple
juggling.

Assume further that early in the learning process for difficult tasks such as unicycling there are
points where learning is very difficult. It is clear that it would be almost impossible for learners to
pass these points if they have to continue to learn another task, though a more simple one, such as
juggling a few balls. In other words if one learn juggling first and then tries the unicycle, the
interference created by the juggling may increase the difficulty of the unicycle in the initial phase
up to an impossible level. But if one is riding the unicycle first, once that difficult learning points
are crossed and the task becomes easier, it is not hard to then add in the juggling.

What are the implications of serial versus simultaneous learning in actual organisms? How often,
for example, does an organism encounter one task first, learn it to mastery and then start on a
separate task? Is it more common for the organism to have to learn both tasks together from the
start? In the case of the what versus where task it seems likely that both tasks occur together from
the start. One rarely is receiving just one form of information without the other. If so, then it may be
difficult to envision a naturalistic situation in what and where learning where a nonmodular network
could do as well as a modular one. But, with other tasks, sequential presentations of the tasks may
not only be plausible, but the norm.

A second issue concerns the need for the first task in the two task sequence to be the more difficult
one for the nonmodular networks to succeed. This constraint poses an interesting problem of how
networks might learn in the course of an organism�s development. It is normally assumed that the
more immature an organism, the lower the level of task difficulty or complexity that it is able to
master. Thus, naturalistically in development, it might seem that organisms as they develop tend to
learn simpler tasks before more complex ones. If this is indeed a general pattern, it suggests that
modular networks might have a distinct advantage for the learning problems confronted by young
organisms, but that non modular networks might thrive in more mature organisms where the natural
order of task difficulties might be reversed.

More broadly, the studies summarized in this paper make it clear no one learning architecture is
optimal in all situations. Modular architectures, whether pre-wired, or acquired through genetic
algorithms, can have distinct advantages over nonmodular ones in some multitask environments,
but not all. The challenge now is to describe in more precise terms those cases where modular
architectures have an advantage and to understand the implications of such findings in artificial
systems for natural systems both in their mature and developing forms.

References

Calabretta, R., Di Ferdinando, A., Wagner, G. P. & Parisi, D. (2003). What does it take to evolve

behaviorally complex organisms? BioSystems 69/2-3, 245�262.

Draft: to appear in Biological Theory 3:1, dated Winter 2008 (MIT Press) [draft, updated March 21, 2008] 18

Di Ferdinando, A., Calabretta, R. & Parisi, D. (2001). Evolving modular architectures for neural

networks. In R. French & J. Sougné (Eds.), Proceedings of the Sixth Neural Computation and

Psychology Workshop Evolution, Learning, and Development, pp. 253-262, London: Springer

Verlag.

French, R. M. (1999). Catastrophic Forgetting in Connectionist Networks. Trends in Cognitive

Sciences, 3(4), 128-135.

LeDoux, J. (2001). The synaptic self. Vicking, New York.

Milner, A. D. & Goodale, M. A. 1998. The visual brain in action. PSYCHE, 4(12)
(http://psyche.cs.monash.edu.au/v4/psyche-4-12-milner.html).

Plaut D. C. & Hinton, G. E. (1987). Learning sets of filters using backpropagation. Computer

Speech and Language 2, 35-61.

Rueckl, J. G., Cave, K. R. & Kosslyn, S. M. (1989). Why are �what� and �where� processed by

separate cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience

1, 171-186.

Ungerleider, L. G. & Mishkin, M. 1982. Two cortical visual systems. In Ingle, D. J., Goodale, M.

A. & Mansfield, R. J. W. (Eds.), The Analysis of Visual Behavior. The MIT Press, Cambridge, MA.

Velichkovsky, B.M. (2007) Towards an Evolutionary Framework for Human Cognitive
Neuroscience. Biological Theory 2(1), 3-6.

mailto:raffaele.calabretta@istc.cnr.it

