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The aim of this paper is to propose an interdisciplinary evolutionary connectionism approach for 
the study of the evolution of modularity. It is argued that neural networks as a model of nervous 
system and genetic algorithms as a simulative model of biological evolution would allow us to 
formulate a clear and operative definition of module and to simulate the different evolutionary 
scenarios proposed for the origin of modularity. I will present a recent model in which the 
evolution of primate cortical visual streams is possible starting from nonmodular neural 
networks. Simulation results not only confirm the existence of the phenomenon of neural 
interference in nonmodular network architectures but also, for the first time, reveal the existence 
of another kind of interference at the genetic level, i.e., genetic interference, a new population 
genetic mechanism that is independent from the network architecture. Our simulations clearly 
show that genetic interference reduces the evolvability of visual neural networks and that sexual 
reproduction can at least partially solve the problem of genetic interference. Finally, it was 
shown that entrusting the task of finding the neural network architecture to evolution and that of 
finding the network connection weights to learning is a way to completely avoid the problem of 
genetic interference. On the basis of this evidence, it is possible to formulate a new hypothesis 
on the origin of structural modularity, and thus to overcome the traditional dichotomy between 
innatist and empiricist theories of mind. 
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1 Introduction 
 
The study of the modular organization of organisms is of interest in different disciplines: the 
biology of development, evolutionary biology, neurosciences and psychology. The terminology 
used when referring to modules varies from discipline to discipline: beginning with Darwin, 
evolutionary biologists have used the term “homologues” when referring to individualized parts of 
two organisms that have been inherited, with more or less modification, from an equivalent organ in 
the common ancestor (e.g., the five-toed state in humans and iguanas; Futuyma 1998, p. 109); 
neuroscientists use the term “brain areas” when referring to parts of the brain that are specialized in 
performing a specific task (e.g., Broca's area; see for example Hirsch et al. 2000).  
 
It is now more than twenty years since Jerry Fodor published his small but seminal book, The 
modularity of mind (Fodor 1983), and the debate about the architecture of mind continues to be a 
central one also in cognitive science. Cognitivists choose to adopt the so called “boxes and arrows” 
models when they study mind and wish to refer to modules. In this model each “box” is used to 
represent a module with a specific function, and the “arrows” connecting boxes are used to 
represent relationships between modules. The dual-route model for the English regular and irregular 
past tense is one of the most frequently cited models in cognitive science literature: in this model 
one nervous pathway is involved in the production of the past tense of regular verbs and the other 
pathway is involved in the production of the past tense of irregular verbs (Pinker & Prince 1988; see 
also Calabretta & Parisi 2005). 
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On one hand, this way of describing the modular organization of mind could be helpful, at least, for 
formalizing experimental data; on the other, this approach has some important disadvantages, the 
first of which is that it does not take into account the real structure of the brain. In other words, by 
using “boxes and arrows” models it becomes difficult to respond to the following simple questions: 
What is the specific box made of and what parts of the brain is it located in?  What are the other 
parts of the brain that the box considered exchanges information with? What about the evolutionary 
origin of brain modules? 
 
Briefly, there are two main questions for cognitive science to answer: what are modules? How and 
why do they emerge? 
 
The first step towards answering these two questions is to define the term “module” precisely. The 
next step is to recreate and study the evolution of modules by taking into account the real structure 
of the brain. 
 
The several attempts aimed at finding definitive answers to these questions have not been 
successful. In this paper I would like to propose a new way of finding correct answers to the 
previously stated questions, that is, using neural networks as simulative models of the brain 
(Rumelhart & McClelland 1986) and genetic algorithms as a simulative model of biological 
evolution (Holland 1992). This different approach to the study of modularity of mind, which uses 
the simulative tools of artificial life, has been called evolutionary connectionism (Calabretta & 
Parisi 2005; Calabretta 2002a). 
 
Using the evolutionary connectionism approach thus makes it possible: to simulate the different 
evolutionary scenarios proposed for the purpose of explaining the origin of modularity; to 
disentangle the role of evolution, development and learning; to explain why some species have a 
modular brain architecture while other species have a nonmodular brain architecture; to understand 
the phylogenetic and ontogenetic dynamics involved in the evolution of modularity; to identify 
mechanisms that facilitate the evolution of modularity and mechanisms that prevent the evolution of 
modularity; to determine the relationship between modularity and genetic duplication; to settle the 
debate between cognitivists, who claim that brain is modular and that brain modules are innate, and 
empiricists, who claim that brain modules are more than anything else the result of  development 
and learning. 
 
The aim of this paper is to propose an interdisciplinary evolutionary connectionism approach for the 
study of the evolution of modularity. 
 
In Section 2 I will show how using artificial neural networks as a brain model allows us to have an 
unambiguous definition of modularity. In Section 3 I will review a recent evolutionary 
connectionism study that takes inspiration from the real structure of  the primate brain and in which, 
given the preceding definition of modularity,  the evolution of modular neural networks is possible 
starting from nonmodular neural networks. I will show how the simulative results obtained allowed 
some of the previously stated questions to be answered. These results suggest a hypothesis 
concerning the role of evolution and learning on the origin of modules (Di Ferdinando et al. 2000, 
2001); moreover, they not only confirm the existence of the phenomenon of neural interference in 
non-modular network architectures, but also for the first time reveal the existence of another kind of 
interference at the genetic level, i.e., genetic interference, a new population genetic mechanism that 
is independent from the network architecture and that has not received appropriate evidence in 
artificial life literature (Calabretta et al. 2003a). 
 
In Section 4 some general conclusions will be drawn. 
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2 Definition of modularity 
 
Examples of module? Toes, Broca’s area, etc. While the definition of module seems to be quite 
simple from an intuitive point of view, the attempt to formulate a more rigorous definition, which 
would allow us to perform an interdisciplinary  comparative study, is much more difficult. 
 
In comparative biology and systematics the homology concept is elusive (Wagner 1995a) and “the 
proper definition of homologues is problematic because there is no consensus about their biological 
role” (Wagner 1995b). 
 
Elisabeth Bates (1994) refers to modularity as a contentious word in that the term “is used in 
markedly different ways by neuroscientists and behavioural scientists, a fact that has led to 
considerable confusion and misunderstanding in interdisciplinary discussions of brain and 
language.” According to Bates (1994), in fact, when a neuroscientist uses the word module “s/he is 
usually trying to underscore the conclusion that brains are structured, with cells, columns, layers 
and/or regions that divide up the labour of information processing in a variety of ways.” 
 
In cognitive science and linguistics we have a different definition of modularity. According to 
Fodor (1983): “a module is a specialized, encapsulated mental organ that has evolved to handle 
specific information types of enormous relevance to the species”. According to him modules are  
cognitive systems, most of all input systems (e.g., language and face recognition in humans and 
other primates, echo location in bats, or fly detection in the frog) that exhibit all or almost all of the 
following nine features as defined by Fodor himself: 
 

1) Input systems are domain specific (p. 47): that is, they are specialized in the type of 
information they can deal with. 

2) The operation of input systems is mandatory (p. 52): that is, it is “mediated by automatic 
processes which are obligatorily applied”. 

3) There is only limited central access to the mental representations that input systems 
compute (p. 55): that is, “input representations are, typically, relatively inaccessible to 
consciousness”. 

4) Input systems are fast (p. 61): that is, the speed of input processes is very high. 
5) Input systems are informationally encapsulated (p. 64): that is, operations of input systems 

on information are not affected by higher level information. 
6) Input analyzers have “shallow” output: (p. 86): that is, the information that the outputs of 

input systems are assumed to encode is limited. 
7) Input systems are associated with fixed neural architecture (p. 98): that is, there is a 

characteristic neural architecture associated with each of the input systems. 
8) Input systems exhibit characteristic and specific breakdown patterns (p. 99): that is, they 

have patterned failures of functioning. 
9) The ontogeny of input systems exhibits a characteristic pace and sequencing (p. 100): that 

is, input systems develop according to specific, endogenously determined patterns. 
 
Many years later, in his book The mind doesn’t work in that way (2000), Fodor replies to Steven 
Pinker’s How the mind works (Pinker 1997) and to Henry Plotkin’s Evolution in mind books 
(Plotkin 1997) regarding adaptionism, the idea that  lots of mind modules are the result of adaptive 
pressures faced by our ancestors. In other words, Fodor criticizes the pan-adaptivistic view of 
evolutionary psychology, that is, the view of brain as a system of modules shaped by natural 
selection (Barkow et al. 1992; Carruthers 2003). Significantly, Fodor also adopts a stance on the so-
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called massive modularity thesis (see for example Sperber 2002), the idea that most or all of 
cognition is modular: according to him “there are good reasons to doubt that MM is true” (Fodor 
2000, p. 55). 
 
The positions described above represent only a small part of all the relatively independent doctrines 
regarding the modularity thesis in cognitive science literature. Here, I would only like to stress that 
nowadays there is no shared model that can be used to clarify the many different hot issues 
regarding the modularity of mind.  
 
One possible solution to this problem would be to attempt to simulate the evolution of modularity. 
In order to do that, we need a clear operative definition of modularity and a well-known model of 
study that can be simulated. As mentioned in the introduction, in order to describe brain architecture 
cognitivists use information flow diagrams in which modules are represented by boxes connected 
by arrows. Since cognitivist modules are not inspired by the brain’s physical structure and way of 
functioning, this kind of description is of no use in simulating the evolution of modularity. With 
regard to “boxes and arrows” models, artificial life models offer at least three main advantages: 1) 
they draw their inspiration from the real structure and mode of functioning of the brain and allow us 
to give a more plausible definition of modularity; 2) they allow us to adopt computer simulation for 
testing evolutionary scenarios; 3) they allow us to take into account chance and other nonadaptive 
evolutionary factors. 
 
Calabretta and Parisi (2005) give a general definition of both modularity and nonmodularity: 
“modular systems can be defined as systems made up of structurally and/or functionally distinct 
parts. While non-modular systems are internally homogeneous, modular systems are segmented into 
modules, i.e., portions of a system having a structure and/or function different from the structure or 
function of other portions of the system.” 
 
The authors give a more specific and rigorous definition of modularity and nonmodularity in the 
same paper (see Calabretta & Parisi 2005, Fig. 14.4):  

 
“In a nonmodular architecture one and the same connection weight 
may be involved in two or more tasks. In a modular architecture each 
weight is always involved in a single task: Modules are sets of 
‘proprietary’ connections that are only used to accomplish a single 
task.” 

 
According to this definition of modularity a neural module is composed of neural units that are 
physically linked to units involved in the same task and are not linked to units involved in different 
tasks. 
 
Once a definition of modularity is established, the simulation of the evolution of modular structures 
becomes possible thanks to simulative models of neural networks and genetic algorithms. 
 
In most connectionist simulations, neural networks have a fixed architecture and are nonmodular. 
Only in a few connectionist studies are modular neural networks considered, but also in these few 
cases network modular architecture is fixed and decided a priori by the researcher (see for example 
Jacobs et al. 1991; Murre 1992).  
 
The study by Jacobs & Jordan (1992) differs from others in that the modular architecture of  a 
neural network is not decided a priori by the researcher, but emerges as a result of organism 
development. This model is based on the preference of real neurons for establishing connections 
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with spatially close neurons rather than with more distant neurons. Due to this simple 
developmental rule, the architectures that emerge in this simulation are modular rather than 
nonmodular. However, this result is also possible because of the hardwired spatial location of 
network units, that is, because of certain decisions taken a priori by the researchers (see Di 
Ferdinando et al. 2001). 
 
In the next Section I will present the first simulative study in which modular neural networks evolve 
in a truly spontaneous fashion starting from nonmodular neural networks.  
 
 
3 Evolution of modularity 
 
Above I answered the question “what are modules?” by giving a definition of modularity, that is, 
Modules are sets of “proprietary” connections that are only used to accomplish a single task. 
 
I will now try answering the second question: How and why do they emerge? 
 
Once the existence of modules in the brain has been postulated, the question of the origin of the 
same brain modules thus obviously follows. In other words, it becomes natural to ask whether the 
information about modules is coded into the genes and therefore transmitted over generations, is the 
end result of a complicated process of brain development during life, or is the result of the interplay 
between the two processes. 
  
A first step towards being able to answer this second question could be to identify modules that it is 
claimed exist in the brain of real organisms. The second step will then be to attempt to replicate the 
evolution of these modules by simulation.  
 
In 1982 Ungerleider & Mishkin suggested that two cortical “streams” of projections in the  brain of 
primates, the ventral and dorsal streams, were respectively involved in the “what and where” tasks 
(Ungerlaider & Mishkin 1982; according to other researchers in “what and how” tasks; see Milner 
& Goodale 1995). The what and where tasks consist of recognizing the identity (“what”) and spatial 
location (“where”) of objects that appear in the organism’s retina. 
 
In 1989 Rueckl, Cave and Kosslyn reproduced the two tasks in a simulative context using a neural 
network that has to learn to perform the two tasks by means of a backpropagation procedure, that is, 
by means of a learning algorithm (Rueckl et al. 1989). 
 
In this study, Rueckl, Cave and Kosslyn compare the performance of different modular and 
nonmodular architectures in learning the what and where tasks. All the network architectures have 
three layers of units: the input layer is composed of 25 units corresponding to a 5X5 retina; the 
hidden layer is composed of 18 units; the output layer is composed of 18 units, 9 of which are 
involved in the what task and the other 9 in the where task (for simulative details, see Rueckl et al. 
1989; see also Di Ferdinando et al. 2001, and Calabretta et al. 2003a, Fig. 1 and 2). Network 
architectures vary in the number of hidden units that are connected either to the what output units, 
or to the where output units, or to both. 
 
Network modularity and nonmodularity are as defined in the preceding Section. In modular 
networks each weight is always involved in a single task: some connections are involved in 
accomplishing the first task, while the other connections are involved in accomplishing the second 
task. In nonmodular networks some connections are involved in accomplishing the first task, some 
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connections are involved in accomplishing the second task, some other connections are involved in 
accomplishing both tasks. 
 
The fact that in nonmodular architecture some connections are involved in both tasks is important in 
that it raises the problem of neural interference. The interference derives from the fact that the 
correct accomplishment of the first task may require the initial weight value of the connection to be 
increased during learning, while the correct accomplishment of the second task may require the 
initial value to be decreased (Plaut & Hinton 1987; Jacobs et al. 1991; see Calabretta & Parisi 2005, 
Fig. 14.4). 
 
The main result of this simulative study is that the architecture with the best performance in the two 
tasks is a modular one in which there are more resources (i.e., hidden units) for the more complex 
task, that is, the what task, than for the simpler task, that is, the where task. More precisely, the best 
architecture is that in which 14 hidden units are dedicated to the what task, and 4 hidden units are 
dedicated to the where task. 
 
Rueckl et al.(1989) have put forward a few hypotheses to account for these results and have argued 
that the difference in performance among modular and nonmodular architectures might explain the 
evolutionary reason for which these two separate neural pathways evolved for the two tasks. 
 
A very simple test for this hypothesis would be to modify Rueckl et al.’s model setup by adding the 
genetic algorithm as a model of evolution (Holland 1992). In this way, it becomes possible to 
simulate the evolution of modular architectures starting from nonmodular architectures. 
 
This was done by Di Ferdinando, Calabretta and Parisi (2000, 2001) with quite surprising results. In 
a first phase of the research, the genetic algorithm was used to evolve both the architecture and 
weights of population of neural networks.  
 
Each neural network represents an organism whose reproductive chances across generations depend 
on the performance in the “what and where tasks”. Each organism is provided with a genotype into 
which the architecture and connection weight values are coded. The architectures in the population 
share the same number of layers, input units, hidden units and output units as well as the same 
pattern of connectivity between input and hidden layers (all the input units are connected with all 
the hidden units). Network architectures vary only in the pattern of connections among hidden and 
output units. 
 
At the first generation a population of 100 individuals is created and each individual is 
characterized by random values for both the weights and the pattern of connectivity among hidden 
units and output units. Each individual is presented with the 81 input patterns of the What and 
Where task (9 objects are presented in 9 different positions), and the individual’s fitness is 
measured as the opposite of the summed squared error on these patterns. 
 
At the first generation population fitness is very low because both the architecture and the weights 
are random; the 20 individuals with highest fitness (smallest total error) reproduce asexually by 
generating 5 offspring which inherit the architecture and the weights of their single parent with the 
addition of some architecture and weight random mutations.  This process is repeated for 10,000 
generations. 
 
In summary, simulations show that the genetic algorithm fails to find architecture and weights that 
are appropriate for solving both the where and the what task. More specifically, at the end of 
simulation networks are able to solve the easier where task and not the more complex what task. 
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Moreover, the evolved architectures emerging at the end of evolution are different from Rueckl et 
al.’s optimal modular architecture.  
 
How to explain these results? Why is the genetic algorithm not able to evolve the appropriate 
network architecture and weights for the two tasks? 
 
There are three main reasons (Di Ferdinando et al. 2001): 

1) The co-evolution of both the neural network architecture and weights is made more difficult 
by the fact that the adapted set of weights can suddenly become maladaptive if the network 
architecture changes due to mutations. 

2) The architecture that evolves is the architecture in which more resources are dedicated to the 
easier task, the where task, and fewer resources to the more complex task, the what task. 
This kind of resource allocation is the opposite of that found by Rueckl et al. (1989) to be 
optimal for solving both tasks. 

3) Also in the few replications of simulation in which the genetic algorithm is able to evolve 
architectures similar to the optimal one, performance in the what task is low due to another 
interference mechanism, genetic interference. This type of interference can result from the 
linkage between advantageous and deleterious mutation falling on different modules that are 
encoded in the same genotype and are inherited together. 

 
These intriguing results induced us to investigate the mechanism of genetic interference more 
thoroughly by collaborating with Gunter Wagner, an evolutionary biologist at Yale University. 
 
With Gunter Wagner we have started an interdisciplinary research project on the evolution of 
modularity. Our evolutionary connectionist project was the first example where the origin of 
modularity was simulated in a computational model (Calabretta et al. 1997) and led to the discovery 
of a new mechanism for the origin of modularity: modularity as a side-effect of genetic duplication 
(Calabretta et al. 1998a, 1998b, 2000; see also Wagner et al. 2005). The project was successful 
beyond expectations (Wagner, personal communication) and recently José B. Pereira-Leal and 
Sarah A. Teichmann of the “Laboratory of Molecular Biology, Structural Studies Division” at 
Cambridge University, by using an analysis of module duplication in Saccharomyces cerevisiae 
protein complexes, provided strong support for our hypothesis on the evolution of modularity (see 
Calabretta et al. 2000; Pereira-Leal & Teichmann 2005).  
 
In order to study genetic interference, we carried out a long series of simulations in which we 
decouple the two processes that are going in our simulations: the process of the change of the neural 
network architecture, and the process of the change of the neural network weights (Calabretta et al. 
2003a). 
 
In this series of simulations we varied the mutation rate, the fitness formula and the kind of 
reproduction. The connection weights are encoded in the inherited genotype and the network 
architecture is fixed. The architecture is modular and is the optimal modular architecture with 14 
hidden units dedicated to the What task and 4 hidden units dedicated to the Where task. Genetic 
algorithm  takes care of evolving connection weights, only. At the beginning of the simulation a 
population of 100 individuals is created and each individual inherits a genotype with random values 
for weight genes. The values of the weight genes are randomly chosen and can vary across 
generations because of mutations. The simulation is terminated after 50.000 generations (instead of 
10000 generations used in Di Ferdinando et al. 2001).  
 
According to our simulations and analyses, genetic interference is a new population genetic 
mechanism that reduces the efficiency of the selection process across generations. In fact, in asexual 
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populations it could happen that conflicting mutations (some favorable and others unfavorable) can 
fall on different but genetically linked portions of the genotype encoding distinct neural modules. In 
these cases, there is no way of retaining favorable mutations while eliminating unfavorable ones 
(see Calabretta et al. 2003a, Fig. 4). 
 
Different analyses showed how interference at the genetic level is a general phenomenon that does 
not depend on differences in the difficulty of the two tasks. In fact, additional simulation results 
showed that this interference comes into play also in simulations in which the genotype codifies for 
multiple separate neural modules involved in tasks that can be identical (i.e., two tasks of ”What”, 
or two tasks of ”Where”) or different, with either the same or different difficulty.  
 
Our simulative model is different than classical models of population genetics of genetic linkage in 
that it is related with the optimisation of two distinct tasks or functions. Our analyses indicate that 
genetic interference requires both genetic linkage between advantageous and deleterious mutations 
affecting different functions, and high mutation rates. Genetic interference appears only above a 
critical mutation rate that it is not possible to predict but requires an analysis of mutational effect 
distributions (see Calabretta et al. 2003a, Fig. 6). 
 
We also investigated the following question: can sexual reproduction eliminate the problem of 
genetic interference? 
 
We carried out a set of simulations in which network architecture was fixed and consisted of the 
one found to be optimal by Rueckl et al. (1989). In these simulations individuals reproduce  
sexually and the task of the genetic algorithm is to find network neural weights only. The results of 
these simulations show how sexual reproduction can mitigate but does not eliminate the problem of 
genetic interference. Sexual reproduction reduces the negative effects of genetic linkage “by 
allowing the decoupling of portions of genotypes affected by favourable and unfavourable 
mutations and the recombining together of genetic segments in new genotypes. In this way sexual 
reproduction can find new genotypes that include only favourable mutations or only unfavourable 
mutations and this may increase the general efficiency of the evolutionary selection process” 
(Calabretta et al. 2003a). 
 
In another set of  simulations, we used a backpropagation procedure as a model of learning. In these 
simulations the genetic algorithm takes care of the architecture of neural networks, while the 
backpropagation procedure takes care of the weights. The simulative setup was the same as the 
previous one except for the fact that the neural weights of each neural network were randomly 
chosen in each generation and modified during the individuals' lifetime by means of the learning 
algorithm. 
 
The results proved very interesting. Evolution was able to find the optimal modular network 
architecture for performing the two tasks, while learning was able to find the appropriate 
connection weights for this architecture. As a result, at the end of the evolutionary process neural 
networks were able to correctly perform both the what and the where tasks.  
 
These results offered us a way of overcoming the traditional dichotomy between innatist and 
empiricist theories of mind, and  allowed us to formulate a new hypothesis on the origin of 
structural modularity: structural modularity as a result of cooperation between genetic adaptation 
and individual learning (Calabretta et al. 2003a; see also Wagner et al. 2005).  
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4 Conclusions 
 
4-day old newborns are already able to differentiate their native tongue from other languages, while 
3-month old babies show surprise if two solid objects seem to occupy the same position in the 
space. According to some researchers (e.g., Spelke 1994), these and many other data suggest the 
innateness of some brain modules, that are specialized for sounds, mechanical relationships between 
objects, numbers, etc. At the other extreme, there are researchers who interpret differently these 
data and stress the role of development and learning in the acquisition of these capacities (e.g., 
Karmiloff-Smith 2000). 
 
The possibility of recreating the evolutionary scenarios responsible for the evolution of modularity 
would be very useful for the purpose of settling the question of nature versus nurture. Clearly, the 
cognitivists’ “boxes and arrows” models are of no use in achieving this goal, while the evolutionary 
connectionism approach using neural networks and genetic algorithms allows us to simulate 
different evolutionary scenarios (Calabretta & Parisi 2005).  
 
In the present paper it is argued that neural networks as a model of  nervous system would allow us, 
first of all, to formulate a plausible definition of module, albeit a simplified one. A clear definition 
of modular and nonmodular neural networks is the conditio sine qua non for simulating the 
evolution of modular architectures starting from nonmodular ones using a genetic algorithm as a 
model of biological evolution. In this way, the different roles of evolution, learning, development, 
chance and other nonadaptative evolutionary factors could also be determined by simulation. 
 
To test the validity of this approach, the evolution of brain ventral and dorsal streams was chosen as 
a case study. These two separate cortical streams in the brain of primates are thought to be 
respectively involved in the tasks of recognizing object identity and of identifying spatial location 
of visually perceived objects. 
 
What did we learn from these evolutionary connectionist simulations? 
 
The results obtained in Di Ferdinando et al. (2001) have, first of all, confirmed the existence of 
neural interference. This interference is present in nonmodular neural networks that have to learn 
multiple tasks. It was also confirmed that modular architecture, in which each module is dedicated 
to the solution of a specific task, is a solution to the problem of neural interference. 
 
A deeper analysis of the results showed that further interference was active at the genetic level both 
in modular and nonmodular architectures. This result becomes more significant by considering that 
the negative effect of genetic linkage reported in our studies is potentially more serious than other 
negative effects of genetic linkage reported in population genetic models (Felsenstein 1974; Haigh 
1978; De Visser et al. 1999; Waxman and Peck 1999): for the first time in literature, it was shown 
that this form of interference, genetic interference, “can completely prevent the adaptation of a 
character due to genetic linkage with deleterious mutations affecting another character” (Calabretta 
et al. 2003a). 
 
The evolvability of a system has been defined by Wagner & Altenberg (1996) as “the genome's 
ability to produce adaptive variants when acted upon by the genetic system”; in other words the 
issue is about understanding the conditions under which mutation, recombination and selection can 
lead to complex adaptations. Our simulations clearly show that genetic interference is a new 
population genetic mechanism that reduces the evolvability of modular and nonmodular visual 
neural networks. 
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It was also shown how sexual reproduction can at least partially solve the problem of genetic 
interference. This important result could help us to explain the genetic and adaptive advantages of 
sexual reproduction and therefore to explain the evolutionary prevalence of sexual reproduction 
among higher organisms. 
 
Finally, it was shown that entrusting the task of finding the neural network architecture to evolution 
and that of finding the network connection weights to learning completely solves the problem of 
genetic interference. Interestingly, this finding suggests that evolution and learning may have 
played different roles in the origin of brain modularity. As stressed in Calabretta et al. (2003a), “the 
reason for these different roles of evolution and learning is that evolution is guided by a global 
evaluation signal (fitness) and seems ‘not to care’ about the specific capacities of individuals but 
only about their total performance, whereas learning during life can use distinct evaluation signals 
(teaching inputs) for each separate neural module”. 
 
From a more general point of view, it is important to stress that this simulative approach has 
allowed many different analyses to be performed. One important feature of our model is in fact the 
co-occurrence of the different levels of biological organization (genetic, neural and cognitive 
levels). This is an essential model component for understanding the dynamics of complex systems 
such as interactions and interference among different levels (Bar-Yam 2000). In particular, the 
genotypic level modelling and the presence of the phenotypic level composed of the two tasks to be 
optimised allowed the mechanism of genetic interference to be understood. Significantly, this kind 
of interference was not described in literature as occurring in other models of genetic linkage 
(Calabretta et al. 2003a; see also Wagner & Mezey 2004). 
 
Using this evolutionary connectionist model of the primate cortical visual “streams” yielded further 
unexpected results: the analyses of the effects of sequential vs. simultaneous learning of multiple 
tasks in modular and nonmodular architectures (Calabretta et al. 2002, 2003b); the study of the 
generalization of “what and where” tasks, and a new hypothesis for the “what” generalization 
subtask: the possibility that organisms do not recognize directly the identity of an object, but, by 
moving their eyes, they first change the position of the object in the retina in order to bring the 
object in the fovea (Calabretta et al. 2004). 
 
With regard to the evolution of modularity many questions remain to be answered. Schematically: 
does the evolution of brain modules differ from the evolution of body modules? What is the role of 
development? What is the relationship between modularity and evolvability? In what ways did the 
nature and complexity of tasks to be performed shape the modular or nonmodular structure of the 
brain? What is the role of nonmodularity? 
 
These are all very difficult questions to answer and it is easy to predict that the nature-nurture 
debate will continue for a long time. In his book Synaptic self, neuroscientist Joseph LeDoux (2002) 
claims that both nature and nurture contribute to synaptic connectivity and, therefore, to personality. 
By presenting his more recent research on mechanisms and neural circuits involved on the genesis 
of the emotion “fear”, LeDoux stresses that the amygdala plays a key role in this process, and 
maintains that in order to understand how the mind works, we have to study the interaction among 
different dedicated synaptic systems for cognitive, emotional and motivational functions (Ledoux 
1996, 2002; for a science fiction novel related to this topic, see Calabretta 2006). Stimulated by the 
work of LeDoux, we can ask the following two questions: the collection of nuclei in the 
telencephalon called amygdala is it or is it not a module for the emotion “fear”? And if yes, how 
and why did it evolve (see Barton et al. 2003)? 
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According to LeDoux, we are our synapses; evolutionary connectionism approach allow  us to 
simulate the communication between neurons at the synaptic level. The integration of the simulative 
models of evolutionary connectionism with the more traditional methods of biology (Wagner et al. 
2005; compare also: Calabretta et al. 2000; Pereira-Leal et al. 2006) and the emergence of new 
paradigms for dealing with complex systems (Calabretta 2002b), represents one of the few 
practicable road towards success in the difficult but fascinating enterprise of answering the two 
questions above: the amygdala is it or is it not a module for the emotion “fear”? And if yes, how 
and why did it evolve?  
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