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Abstract

The existence of modules is recognized at all levels of the
biological hierarchy. In order to understand what modules
are, why and how they emerge and how they change, it
would be necessary to start a joint effort by researchers in
different disciplines (evolutionary and developmental
biology, comparative anatomy, physiology, neuro- and
cognitive science). This is made difficult by disciplinary
specialization. In this paper we claim that, because of the
strong similarities in the intellectual agenda of artificial
life and evolutionary biology and of their common
grounding in Darwinian evolutionary theory, a close
interaction between the two fields could easily take place.
Moreover, by considering that artificial neural networks
draw an inspiration from neuro- and cognitive science, an
artificial life approach to the problem could theoretically
enlarge the field of investigation. The present work is the
first one in which an artificial life model based on neural
networks and genetic algorithms is used to understand the
mechanisms underlying the evolutionary origin of
modularity. An interesting problem that we will address in
this paper is whether modules that start as repeated
elements because of genetic duplication can develop to
become specialized modules. A linecar regression
statistical analysis performed on simulation data confirms
this hypothesis and suggests a new mode for the evolution
of modularity.

Introduction

Various disciplines concerned with the study of
organisms and their behavior find it useful to refer to
‘modules’ as components that play identifiable roles in
systems at various levels and tend to maintain their
identity over time. Although nonmodularity may also
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play a part in biological structure and function, the
existence of modules is recognized at all levels of the
biological hierarchy. The ‘modularity of mind’ is a
well-known assumption of symbol-manipulation
models of cognition. The mind is seen as composed by
a multiplicity of modules that are specialized for
various behavioral capacities and areas of activity.
Neuroscientists recognize in the brain various types of
units above the cellular level: columns, areas, systems,
etc. In fact the total architecture of the brain appears to
be a mosaic of interacting components with structural
and functional specialization. Geneticists subdivide the
DNA chain into genes that code for proteins and control
the genotype-to-phenotype mapping. Modules are also
recognized at levels lower and higher than the gene
level. At a lower level, genes are composed of triplets
(codons) of bases (adenine, tymine, cytosine, guanine
and uracil), each of which codifies for a specific amino
acid. At a higher level, each gene codifies for a specific
protein. The sequence of amino acids for each protein,
as it is codified exactly in DNA, contains all the
information to determine the three-dimensional
structure on which the function of that protein finally
depends (see for instance Creighton 1993 and
Calabretta, Nolfi, and Parisi 1995). As stressed by
Doolittle and Bork (1993), proteins are often composed
by a limited group of modular elements (domains) that
have spread and multiplied during evolution in ways
that are starting to be understood. At the phenotypic
level evolutionary biologists recognize homologous and
analogous phenotypic traits in organisms belonging to
different species or higher taxa, and repeated
components in individual organisms, such as vertebrae
in mammals (see Futuyma 1998, p. 669).
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Given the postulated existence of modules at all these
levels and their importance for describing and
explaining both structure and process at each level, it is
critical to understand what modules are, why and how
they emerge, how they change, etc. To achieve this
understanding it appears to be crucial to be able to
coordinate modules existing at different levels of the
biological hierarchy and to understand how modules at
one level are related to those at other levels. This is
made difficult by disciplinary specialization. The sheer
amount of detailed empirical data that must be taken
into consideration at each level, the heterogeneity of
theoretical vocabularies and empirical methods used to
study phenomena at different levels, and the great
complexity of the between-level mappings, make it very
difficult to clarify the relationships among modules at
different levels in real organisms.

One possibility, then, is to study these problems in
artificial organisms. Artificial Life studies all kinds of
biological phenomena as they occur in artificial
organisms and it can help us overcome many of the
difficulties encountered in trying to relate modules at
different levels. First, artificial organisms are simpler
than real organisms. Second, simulations of biological
phenomena at different levels can adopt a unified
theoretical framework to facilitate inter-level
conceptual dialogue. Finally, the computer is a very
powerful research instrument that allows us to observe
and manipulate complex phenomena and nonlinear
interactions among large number of entities at each
level and between levels.

In this paper we adopt an Artificial Life approach in
the hope that this approach can shed some useful light
on modules at different levels and how they are related
to each other.

Previous Work

Research in the field of neuro- and cognitive sciences
tends to assume that human cognitive process are
accomplished by means of specialized modules (see
¢.g., Moscovitch and Umiltd 1990, Fodor 1983; for a
critique of Fodor’s point of view see Karmiloff-Smith
1992). Cowey (1981) and Kaas (1989) ask why the
brain has so many visual areas. Ballard (1986) suggests
that a limitation on the number of neurons compels the
brain to adopt a modular architecture. Stevens (1994)
maintains that «the complexity of human brain arises
not from the complexity of its basic processing
elements (the cortical module), or the richness of
connections between modules, but simply in the number
of the modules present». (For some connectionist
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simulations of modularity, see Jacobs, Jordan, and
Barto 1991 and Rueckl, Cave, and Kosslyn 1989).

Even if the recognition of the existence and
importance of modularity has a long historical tradition,
there is little understanding of how modularity hag
originated. Evolutionary biologists ask whether
modularity is an inherent property of organisms and
thus not the result of evolution or it is the result of
selection shaping the genotype-phenotype mapping
function (see for instance Wagner 1995). The
evolutionary implications of modular organization for
development have been described by John Bonner in hig
book on the evolution of complexity (Bonner 1988),
Modularity would allow the adaptation of different
functions with little or no interference with other
functions. Several population genetic models have beea
suggested in order to explain the evolutionary origin of
modular design (e.g., Wagner and Altenberg 1996;
Wagner 1996; Altenberg 1995) but our current
knowledge is insufficient to assess the plausibility of
these models.

In the field of Artificial Life, some researchers have
tried to exploit modular design for improving the
performance of various artificial systems such as
artificial neural networks, evolutionary algorithms, and
robots. Gruau (1994) applies a genetic algorithm to the
synthesis of neural networks using cellular encoding as
a new technology. This technology «can automatically
and dynamically decompose a problem into a hierarchy
of sub-problems, and generate a neural network solution
to the problem. The structure of this network is a
hierarchy of sub-networks that reflect the structure of
the problem.» Snoad and Bossomaier (1995) consider
«how genetic algorithms (GAs) and artificial neural
networks (ANNs) (connectionist learning models)
complement each other and how combining them (i.e.
evolving artificial neural networks with a genetic
algorithm), may give insights into the evolution of
structure and modularity in biological brains.» Cho and
Shimohara (1997) investigate «the emergence of
structure and functionality of modular neural networks
trough evolution.» The model they present is applied to
a visual categorization task with handwritten digits.

In order to evolve neural controllers for mobile
robots, Nolfi (1997) describes a modular neural network
architecture that clearly outperforms other architectures
in performing a garbage-collecting task (see below).
This architecture is called an ‘emergent modular
architecture’ because although modules are available
from the beginning it is evolution that decides whether
to use them or not by breaking down the required
behavior into sub-components corresponding t0

different neural modules. In the present work we use the
same simulation scenario of Nolfi (1997) but we add
the genetic operator of gene duplication in order to
explore the relationship between the evolutionary
emergence of modularity and the phenomenon of gene
duplication.

To our knowledge, the present work is the first one in
which an artificial life model based on neural networks
(Rumelhart and McClelland 1986) and genetic
algorithms (Holland 1992) is specifically used to
understand the mechanisms underlying the evolutionary
origin of modularity.

Duplication-Based Modules
In the present paper we are concerned with modules
that play a role in the genotype-to-phenotype mapping.
More specifically, we are interested in the evolution of
modules at the genetic level that map into single
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functions at the behavioral level of the entire organism.
Mappings from genes to higher functions can be
modular or nonmodular (Wagner and Altenberg 1996).
The mapping is modular when there are few pleiotropic
effects among characters serving different functions,
with pleiotropic effects existing mainly among
characters which serve one and the same function
(Figure 1, right). (Pleiotropy is «the influence of the
same genes on different characters», Futuyma 1998).
On the contrary, we have a nonmodular mapping when
there are pleiotropic effects both among characters
serving different functions and among characters
serving a single function (Figure 1, left). Therefore,
modules can be defined as a collection of characters at
different levels that are all responsible

Figure 1. Examples of nonmodular and modular genotype-to-phenotypes mapping. Complexes of phenotypic characters
{A, B, C} and {D, F, G, H} serve behavioral functions F1 and F2, respectively. The genetic representation is modular in
the case to the right because some genes (ie., {Gl, G2, G3}) have primarily pleiotropic effects on the first set of
characters (C1) supporting behavioral function F1 whereas other genes (i.e., {G4, G5, G6}) have primarily pleiotropic
effects on the characters (C2) subserving function F2. The left case is nonmodular because there are about the same

amount of pleiotropic effects on the characters subservin

1996).

g both functions. (Figure redrawn from Wagner and Altenberg




mainly for a single function. Put simply, in the genes-
to-behavior mapping a module can be defined as a
collection of genes which produce a set of molecules
which in turn are responsible in the regulation of the
nervous system serving a given behavioral function.
Notice how this definition of module is more
constrained than others. Neuro-physiologists, for
instance, in defining a module take into account the
nervous system and the higher level of organization
(behavior) which is the result of the activity of the
nervous system. However, they do not usually take into
consideration lower levels such as the molecular and
genetic level. They do not ascertain that what they have
identified as a neural module is the result of a collection
of genes that mainly codify for that phenotypic
character. If we take an evolutionary perspective,
however, the genotype level plays a very important role
because it is at this level that novelties are produced
through mutation, recombination, and selection.

Modules can be seen as specialized components and,
therefore, different from each other, or they can be
recognized as repeated identical elements. An
interesting problem that we will address in this paper is
how the two types of modules are related. In particular
we will ask if modules that start as repeated elements
because of genetic duplication can develop to become
specialized modules.

Wagner and Altenberg (1996) stressed that «although
modularity may sometimes be intrinsic to the
mechanism of an organismal function, in many cases,
especially development, modularity appears to be an
evolved property.» A possible mechanism of
morphological innovation is the differentiation of
repeated elements (Miiller and Wagner 1991; Ohno,
1970; Weiss 1990), for instance the differentiation of
metameric segments at the origin of insects (see for
instance Akam, Dawson, and Tear 1989). Various
authors have stressed the role of genetic duplication for
the emergence of evolutionary novelties, especially in
complex organisms. Li (1983) claims that «gene
duplication is probably the most important mechanism
for generating new genes and new biochemical
processes that have facilitated the evolution of complex
organisms from primitives ones». Tautz (1992) argues
that «redundancy of gene actions may [..] be a
necessary requirement for the development and
evolution of complex life forms» and in fact
«redundancy seems to be widespread in genomes of
higher organisms» (Nowak et al. 1997). In the neutral
theory of molecular evolution (Kimura 1983), the
duplication relaxes the selective constraints on one of
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the two copies allowing the accumulation of mutations
leading to the emergence of a new function (Coissac,
Maillier, and Netter 1997; see also Ohta 1989).

In the present work we present simulations of the
evolution of populations of artificial organisms focusing
on the evolutionarily emergence of functionally
different modules at the neural-behavioral level from
gene duplication.

A typical Artificial Life simulation addressing
problems at the behavioral level involves a population
of organisms living and reproducing in an environment.
The behavior of each individual organism is controlled
by a neural network that encodes the state of the local
environment in its input units and some movement of
the organism in its output units. Each individual has an
inherited genetic code that specifies (some of) the
properties of the individual’s neural network and,
therefore, of the individual’s behavior. The individuals
that inherit better neural networks tend to behave more
efficiently and are more likely to leave offspring. The
genetic code is inherited with random mutations and/or
sexual recombination of parts of the genetic code of one
parent and parts of that of the other parent. The
resulting offspring are in many cases worse than their
parents but, although infrequently, they can represent an
improvement over their parents. The selective
reproduction of the best individuals and the constant
addition of variability through mutations and/or sexual
recombination make it possible to observe evolutionary
change in the population at three levels: genetic, neural,
and behavioral (Miglino, Nolfi, and Parisi 1996).

We compare two populations. In both populations
neural modules start as reduplications in the genetic
code and they evolve their connection weights during
the evolutionary process. In one population the genetic
code is hardwired from the beginning for coding for
two distinct neural modules for each separate aspect of
the network’s output. In principle each of the two
modules can control the same network’s output. In the
other population the emergence of distinct modules
becomes an adaptive process in the sense that the
genetic code includes a ‘reduplication gene’ that can be
turned on at some point during the evolutionary
process. An important difference between the two
populations is that in the first population the two
alternative neural modules controlling the sams
network’s output both start from zcro, i.e., from random
connection weights, and they must evolve their
connection weights in parallel to become specialized for
different tasks, whereas in the second population 8
duplicated module starts with the weights already

evolved for the first module and must then adapt these
weights to differentiate and specialize with respect to
the first module. We will call the first type of modules
«hardwired» and the second type of modules
«duplication-based».

The two populations are compared with respect to
how much modules at the genetic level map into
meaningful units at the behavioral level. More
specifically we want to test the prediction that modular
architectures that originate in genetic duplication tend
to have modules corresponding to meaningful
behavioral units more often than architectures with
hardwired modules.

Let us explain what it is for a module to correspond to
a meaningful behavioral unit. Imagine a population of
organisms (robots) living in a walled environment that
contains a certain number of objects. The task for these
organisms is to grasp the objects with their ‘arms’ and
to release the objects over the peripheral wall outside
the environment. The entire behavioral sequence that
allows the organisms to accomplish this task can be
divided up into a hierarchy of meaningful units. At the
highest level of the hierarchy the sequence can be
divided into two units: grasping an object and releasing
the object beyond the wall. At the next lower level, in
order to grasp an object the organism must find the
object and in order to do so it must discriminate the
object from the peripheral wall, approach and reach the
object. At the lowest level the organism must explore
the environment until it perceives an object. Also
releasing the object on the other side of the wall can be
divided into subsegments: avoid and ignore the other
objects (since only one object can be grasped by the
organism’s arms), reach the wall, open the arms to
release the object beyond the wall. Each of these
segments is a meaningful behavioral unit. Our question
is whether neural modules specialize for these units in
the sense that different modules are used when a
particular behavioral unit must be executed. We believe
that this may be so for modules that emerge from
genetic  duplication and represent evolutionary
specializations of already existing and functional
modules whereas hardwired modules tend to be less
clearly associated with meaningful behavioral
segments.

Simulations

We ran a set of simulations in which two different
populations of neural networks are trained to control a
mobile robot designed to keep an arena clear by picking
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up trash objects and releasing them outside the arena.
The robot has to look for ‘garbage’, somehow grasp it
with its arms, and take it out of the arena.

The robot is a miniature mobile robot called Khepera,
developed at E.P.F.L. in Lausanne (Mondada, Franzi,
and Ienne 1993). The robot is supported by two wheels
that allow it to move in various directions by regulating
the speed of each wheel. In addition, the robot is
provided with a gripper module with two degrees of
freedom. The two arms of the gripper can move through
any angle from vertical to horizontal while the gripper
can assume only the open or closed position. The robot
is also provided with six infrared proximity sensors
positioned on the front of the robot and an optical
barrier sensor on the gripper capable of detecting the
presence of an object between the two arms of the
gripper. The infrared sensors allow the robot to detect
obstacles to a distance of about 4 cm. The environment
is a rectangular arena 60x35 cm surrounded by walls
and containing 5 objects. The walls are 3 cm in height
and the objects are cylinders with a diameter of 2.3 cm
and a height of 3 cm. The 5 objects are positioned
randomly inside the arena. To speed up the evolutionary
process a simulator of the physical robot and
environment was used (see Nolfi 1997).

The basic network architecture is identical in the two
populations (see Figure 2). The architecture includes 7
input units directly connected to 4 output units, each
with its associated bias, for a total of (7x4)+4=32
connections. Six of the 7 input units continuously
encode the activation level of the 6 infrared sensors
while the seventh input unit binarily encodes whether
(1) or not (0) there is an object between the two arms of
the gripper. Two of the 4 output units continuously
encode the speed of Khepera’s two wheels. The
remaining 2 output units binarily encode whether (1) or
not (0) each of two procedures are executed by the
robot: one output unit encodes the procedure of picking
up an object and the other unit the procedure of
releasing the object.

The two populations differ in the type of modularity
that enriches this architecture (see Figure 2). In one
population the architecture of all individual organisms
includes two modules for each of the 4 output units
since the beginning of evolution. More specifically, the
architecture has two copies for each of the 4 output
units, with each copy receiving its own set of
connections from the input units. Which of the two
alternative output units actually controls the robot’s
behavior in each particular input/output cycle is decided
in the following way. Each copy of an output unit has




associated with it a special unit called a ‘selector’ unit
that receives connections from all the input units and
has its own bias. In each cycle the simulator ascertains
which of the two selector units is more activated and it
uses the output unit corresponding to the more highly
activated selector unit to determine the organism’s
behavior. One copy of each output unit, with its
associated connections, plus its selector unit with its
associated connections, constitute a module. For each
output unit, therefore, there are two alternative modules
that compete for controlling the organism’s behavior
and it is the input from the environment that ultimately
decides which of the two alternative modules control
the robot’s behavior.

Figure 2. Modular neural network architecture of the two
populations. The basic architecture is identical in the two
populations. The two populations differ in the type of
modularity which is added to this basic architecture. In one
architecture two modules compete to gain control of each of
the four actuators in all individuals since the beginning of
evolution. In the second population the individuals of the
initial generation have only one module for each motor. A
second competing module may be added in individuals of
later generations as a result of the duplication operator (see
below). Another difference is that in the first population
competing modules have different random weights at the
beginning while in the second population when a second
competing module is generated, the two competing modules
have identical weights.

A genetic algorithm (Holland 1992) was used to
evolve the connection weights of such neural networks.
In the first population the genotype encodes the values
for all the connection weights of the modular
architecture. Since each module includes 7x2

connections plus 2 biases and there are 8 modules, the
total number of connection weights encoded in the
genotype is 128. Since each weight value is binarily
encoded using 8 bits, the total genotype is a sequence of
128x8=1024 bits. The individuals of the first generation
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are assigned random values for these 1024 bits and then
the evolutionary process progressively finds better and
better genotypes on the basis of the selective
reproduction of the best individuals and the addition of
random mutations to inherited genotypes. Each
generation includes 100 individuals. At the end of life
the 20 best individuals are selected for reproduction and
each of these individuals generates 5 offspring, that ig,
new individuals with the same genotype of their parent
(reproduction is nonsexual). Genetic mutations consist
in changing the value of about 10 bits in each genotype
(1% mutation rate). The 20x5=100 new individualg
constitute the second generation. The process is
repeated for 1000 generations.

In the second population the genotypes of the initial
generation encode random values for the connection
weights of the single modules of the basic architecture ;
32 (7x4=28 plus 4 biases) connections. However, since
each of the 4 output units has associated with a
nonfunctional selector unit with its 7 connection
weights, the total number of connection weights
encoded in the genotypes of the initial generation is 64.
Notice however that until the module is not duplicated
this selector unit remains completely nonfunctional and
its associated connection weights are subject to random
drift only. The genotype of this second population has 4
additional ‘duplication genes’ each associated with one
of the 4 output units. When one of these duplication
genes is turned on by some mutation the gene
duplicates its corresponding module assigning to the
duplicated module the same weight values of the
original module. The duplication genes cause a
duplication with some probability that we have varied
in various simulations (i.e., 0.04%, 0.03% and 0.02% of
the modules were duplicate in different simulations). In
the generation in which the duplication of some module
occurs there is no possible change in behavior since
both alternative modules have the same connection
weights but subsequently random mutations acting on
the module’s connections weights (both on those
leading to the output unit and those leading to the
selector unit of the module) can progressively
differentiate the two alternate modules. (As in the first
population, we used a mutation rate of 1%).

In conclusion, we have two populations. One
population has a fixed, hardwired modular architecture
since the beginning of the evolutionary process. What
we can determine with respect to this first population is,
first, whether the evolved individuals do actually make
use of the alternate modules as a function of the
circumstances or they only use a single module for all

environmental inputs, and second, in the case they use
alternate modules, whether or not we can attribute a
functional meaning to the modules, i.e., whether or not
distinct modules control meaningful behavioral units.
The other population starts with a nonmodular
architecture but it is free to evolve a modular
architecture if that turns out to be adaptive. In the
present model modules can be evolutionarily added to
neural architectures (with a limit of one module for
each motor output) but they cannot be deleted. Hence,
because of purely random reasons the individuals in this
second population will tend to approximate the modular
architecture of the first population, with two alternate
modules for each output unit. However, the modules of
the second population have a different origin than those
of the first population. Not only are they evolved rather
than hardwired but while the modules of the first
population all start with random weights and therefore
two alternate modules for the same output unit both
evolve from zero (random connection weights), the
alternate modules in the second population start with
the same weights of the original modules (since they
duplicate these modules) and therefore with weight
values that are already adapted. What we want to
determine is if the different origin and evolutionary
history of modules that arise out of genetic duplication
results in modules endowed with a greater amount of
functional meaning at the behavioral level.

Results

Both populations with modules reach a higher fitness
level than a population with only the basic architecture
and no modules (cf. Nolfi 1997 and Calabretta et al.
1997). However, the two populations with modules do
not differ in terms of overall fitness except that fitness
growth is slightly slower in the population with
duplication-based modules (results not showed). In
order to demonstrate that modularity plays a critical
role, we varied the duplication rate in the population
with duplication-based modules, with the result that
both average and peak performance decreased linearly
with a decreased duplication rate until the advantage of
modular design was lost (see Calabretta et al. 1997).

We then examined the behavior of a typical evolved
individual with hardwired modularity and a typical
evolved individual with duplication-based modularity
and found that an interesting difference emerged
between the two individuals. While in the hardwired
modular individual there was no correspondence
between modules and meaningful behavioral units
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(‘distal’ description of behavior, according to Nolfi's
definition), in the individual with duplication-based
modularity neural modules or, better, combinations of
neural modules turned out to be responsible for specific
meaningful behavioral units (see Calabretta et al. 1997,
Figure 5 and Figure 6).

In order to extend and reinforce this result we
examined the best individual of the last generation in
each of the 10 replications of the simulation for both
populations and we compared the results concerning the
statistical relationships between meaningful behavioral
vnits and the use of the modules. Specifically, we
considered as a meaningful behavioral unit the fact that
the robot had or did not have a target object on the
gripper. We tested the best individuals of the last
generation in 10 different repetitions of the simulation
for both populations. Each individual was allowed to
live for 1 epoch consisting of 500 actions.

Hardwired Duplication-based
modularity’s modularity’s
Seed| chi-square values chi-square values
1 11.135 368.662
2 4.679] 246.374
3 425.927 495.961
4 2.747 218.359
5 21.556| 190.511
6 439.391 55.947
7 16.647 56.246
8 2.348 296.993
9 29.078 32.334
10 27.081 321.769]

Table 1. Chi-square values for the single best individuals of
the last generation in each repetition (initial random seed) of
the simulation for hardwired modularity (left) and
duplication-based modularity (right).

For each action we recorded (in binary) both the state
of the modules (i.e., which of the two available modules
for each motor output was active) and if the meaningful
behavioral unit was being executed or not. For each
repetition of the simulation we calculated the linear
regression between meaningful behavioral unit as a
categorical dependent variable and the state of modules
as a categorical independent variable. As we already
have said, we wanted to test the prediction that modular
architectures that originate in genetic duplication tend
to have modules corresponding to meaningful




behavioral units more often than architectures with
hardwired modules.

Table 1 shows the chi-square values for each
repetition of the simulation both in the case of
hardwired modularity and of duplication-based
modularity. If we look at the frequency distribution of
chi-square values, two distinct pictures emerge for the
two models (see Figure 3). For the hardwired
modularity model chi-square values are very low in 8
out of 10 replications of the simulation; more precisely,
these values are less than 20 in 5 replications and less
than 30 in 3 replications (see left graph of Figure 3 and
also Table 1).

In other words, there is a very low correlation between
the meaningful behavioral unit we have selected for
examination and the use of specific modules in 8 out of
10 replications of the simulations (in 4 replications of
the simulations the correlation is not significant at all).
Modules do not appear to be specialized for the specific
meaningful behavioral unit we have considered.
Conversely, for the duplication-based modularity model
chi-square values are very high in 9 of 10 replications
of the simulation; more precisely, they are higher than
100 in 7 replications and higher than 50 in 2
replications (see right graph of Figure 3 and Table 1). In
statistical parlance, the dependent variable (i.e., the
meaningful behavioral unit) can be said to be a function
of the independent variable (i.e., the state of modules),

282

that is, there is a significant correlation between the
considered meaningful behavioral unit and the usage of
modules in all the 10 replications of the simulation,
(Notice that the degrees of freedom and the significance
values vary in different simulations depending on how
many modules are functional in particular neural
networks). This means that combinations of neural
modules are specialized for the specific meaningfal
behavioral unit we have considered and that evolved
individuals tend to use different modules in different
environmental situations. In other words, the prediction
that modular architectures originating in genetic
duplication tend to have modules corresponding to
meaningful behavioral units more often than
architectures with hardwired modules appears to be
confirmed by the present results.

Interpretation and Conclusions

The results presented above are suggestive of a new
mode of evolution for modularity. Modularity may
critically depend on the duplication and subsequent
divergence of units that are already partially adapted to
some functional task. This proposed mechanism is thus
different from the combination of directional and
stabilized selection on preexisting characters proposed
in Wagner (1996) as well as from the ‘constructional’
selection for genes with lower degrees of pleiotropy
proposed by Altenberg (1995).
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Figure 3. Frequency distribution of chi-square values shown in the Table 1, both in the case of hardwired modularity (left)

and of duplication-based modularity (right).

We suggest the following scenario to explain the results

of our simulations. In our model, the evolution of

functional specialization depends on the partial
adaptation of the units prior to the duplication event. We
tested this by simulating the addition of neural units with
random connection weights. The results of these
simulations show that this does not lead to the origin of
functionally specialized modules (results not shown). We
assume that prior to duplication the units serve more than
one function. We further assume that these multiple
functions lead to functional conflicts in the optimization
of functional performance. A duplication of a multi-
functional unit then releases these constraints.
Consequently the duplicated units are free to specialize
for one of the functions and a modular mapping between
functions and neural modules emerges. We are currently
undertaking simulations to test this hypothesis.

This interpretation of our simulation results is similar
to one model of evolution by gene duplication which has
been proposed by Hughes (1994). The standard model,
going back to Ohno (1970), assumes that the gene has
only one function prior to duplication but that after
duplication one copy is free to explore new functional
opportunities. It has been argued that this model is
problematic in assuming that new functions can be
acquired by random search, i.c., mutation and random
drift. An alternative model proposed by Hughes (1994)
assumes that prior to duplication the gene is serving
multiple functions, and that the performance of these
functions is not optimal because of conflicting adaptive
demands. After gene duplication, the two copies are
released from the conflicting functional demands and
each gene copy specializes for one of the functions of the
ancestral gene. This model is supported by the
preponderance of evidence about the functional history
of duplicated genes (Hughes, 1994).

If correct, this interpretation about the origin of
functional modularity raises important questions about
the relationship between evolutionary mechanisms and
evolvability. As emphasized by Bonner (1988) and
Wagner and Altenberg (1996), modular genetic
architectures are superior in their ability to produce
functionally improved mutations. But the question
remains whether these genetic architectures arise because
of their impact on evolvability. There are a number of
difficulties associated with the idea that evolvability
arises as an adaptation to evolvability (for a recent
discussion see Steward 1997). Our results further
accentuate these problems, since the mechanism for the
origin of modularity in our model does not derive from
or is related to evolvability. Modularity appears to be a
consequence of the evolution of functional specialization.
Evolvability per se does not seem to be a factor in its
origin. If this interpretation is correct, evolvability has to
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be seen as a secondary consequence of adaptation (effect
selection) and not an adaptation to the evolvability of
complex organisms.
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Abstract

In this paper we first review the current view of the
evolution of complexity and novelty in biotic evolution.
Next we show that the basic processes thereof do hap-
pen automatically and are generic properties of systems
including the basic mechanisms of Darwinian evolution
plus local, as opposed to global, interactions. Thus we
show that the multilevel evolution so generated can be
studied within the paradigm ‘simple rules lead to com-
plex phenomena’. We derive some results demonstrating
the power of such multilevel evolutionary processes to in-
tegrate information at multiple space and time scales.

Nevertheless, we also point out shortcomings of such
an approach which necessarily uses a priori chosen
and preferentially relatively simple interaction schemes.
However, straightforward extensions towards more com-
plex interaction schemes generally leads to ad-hocness
and over-determinedness, rather than fundamentally
new behavior of the system, and often to less under-
standing of that behavior. Still, biological theory forma-
tion needs a method to go beyond the generic behavior
of simple interaction schemes.

We propose to use evolutionary optimization of very
trivial fitness functions which are obtainable in many dif-
ferent ways, to push back the necessary a priori choices
and to zoom in on interesting non-generic phenomena
and their general properties. We thus derive insights
into relationships between sets of derived properties at
several scales. We discuss how this approach can be used
in biological theory formation, focusing on information
accumulation and utilization in replicator systems and
immune systems.

Introduction

Reasoning from a chemical point of view, de Duve (1995)
portrays ‘life as a cosmic necessity’. Maynard Smith and
Szathmdry (1995b; 1995a), reconstructing the course of
evolution, conclude that a limited number of major tran-
sitions shaped living systems as we know them today,
and that these major transitions involved the processes
of symbiogenesis, conflicts among levels of selection, di-
vision of labor, and the transition from limited inheri-

tance to universal inheritance. Studying evolution from
a bioinformatic point of view, we have shown that the
first three of these major transition defining processes
are generic consequences of extending basic mutation
and selection with local interactions. Thus, we might
also portray Yife as a local necessity’.

Nevertheless, due to inheritance-based information ac-
cumulation, we can hardly study, e.g., an elephant as
a generic property of matter or information: many of
its properties appear to be arbitrary accidents. Even
though indeed chance is an inalienable part of life, there
may be stronger constraints than now appears. Biologi-
cal modeling usually either focuses on those phenomena
which are ‘generic’, or simply aims at mimicking prop-
erties observed in a particular system. For better un-
derstanding biotic systems we have to face the difficult
question of how we can obtain generic theories of non-
generic phenomena.

In other words, we usually study either how complex
behavior is generated from simple rules, or how simple
(in the sense of a priori definable) behavior is generated
by complex rules. Understanding biological systems re-
quires that we also face the difficult question of studying
complex behavior generated by complex rules, without
getting lost in arbitrary over-determinedness.

In this paper we present one approach for doing this.
It involves focusing on ‘side effects’ of evolutionary op-
timization where the optimization criterion is extremely
‘uninteresting’, and can better be seen as a minimal con-
dition than as ‘goal’. We present two examples in which
we employ our approach. Using diversity of entities as
optimization criterion, we derive relationships between
the topology of catalytic networks, self-structuring and
information storage and utilization: self-structuring is a
prerequisite for information storage and utilization. Us-
ing recognition of pathogens as optimization criterion,
we derive a relationship between genetic operators and
immune system diversity, and thus obtain a hypothesis
to explain differences between vertebrate and inverte-
brate immune systems. In all cases the observed patterns
can only be observed in the evolved systems because the
‘random’ initial condition of the evolutionary optimiza-




