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Abstract

Recently, a new approach involving a form of simulated evolution has been proposed to build
autonomous robots. However, it is still not clear if this approach is adequate for real life
problems. In this paper we show how control systems that perform a non-trivial sequence of
behaviors can be obtained with this methodology by "canalizing" the evolutionary process in the
right direction. In the experiment described in the paper, a mobile robot was successfully trained
to keep clear an arena surrounded by walls by locating, recognizing, and grasping "garbage"
objects and by taking collected objects outside the arena. The controller of the robot was evolved
in simulation and then downloaded and tested on the real robot. We also show that while a given
amount of supervision may canalize the evolutionary process in the right direction the addition
of unnecessary constraints can delay the evolution of the desired behavior.

1. Introduction

Recently, a new approach to the
development of autonomous robots based on
an automatic design process has been
proposed. It has been called Evolutionary
Robotics because it involves a form of
artificial evolution (Cliff, Harvey, and
Husband, 1993).

Evolutionary Robotics approaches are
based on the genetic algorithm technique
(Holland, 1975). An initial population of
different "genotypes", each codifying the
control system (and possibly the morphology)
of a robot, are created randomly. Each robot is
evaluated in the environment and to each robot
is assigned a score ("fitness") that measures the
ability of the robot to perform a desired task.
Then, the robots that have obtained the highest
fitness are allowed to reproduce (sexually or
agamically) by generating copies of their
genotypes with the addition of random changes
("mutations"). The process is repeated for a
certain number of generations until, hopefully,
desired performances are achieved (for
methodological issues see Cliff, Harvey, and

Husband, 1993; Nolfi, Floreano, Miglino and
Mondada, 1994).

Researchers interested in this approach are
currently investigating six main issues (for a
review see Matarik, and Cliff, 1996): (a) the
feasibility of the use of simulation in order to
speed up the evolutionary process (Brooks,
1992; Nolfi, Floreano, Miglino, and Mondada,
1994; Jacobi, Husbands, and Harvey, 1995;
Miglino, Lund, Nolfi, 1995); (b) the
importance of introducing a mapping process
between the genotype and the phenotype that
could capture at least some of the important
properties of the ontogenetic developmental
process in natural organisms (Cliff, Husband
and Harvey, 1993; Nolfi, Miglino, and Parisi,
1994; Gruau, 1995); (c) the integration of a
lifetime learning process with the evolutionary
process in order to enhance the adaptation
power of the genetic algorithm (Floreano, and
Mondada, 1996b) or in order to allow
adaptation to rapid changes in the environment
(Nolfi, and Parisi, in press); (d) the evolution
of the hardware architecture (Higuchi et al.
1992; Thomson 1995); (e) The evolution of
social behaviors (Matarik, 1994; Vanio et al.,
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1995); (f) the attempt to apply this
methodology to solve relatively complex tasks
(Nolfi, and Parisi, 1995). In this paper we will
focus on this last topic. We will show how
control systems that perform a non-trivial
sequence of behaviors can be obtained with
this methodology by carefully designing the
conditions in which the evolutionary process
operates.

2. Related Work

Several types of artificial systems that
perform different behaviors have been obtained
through artificial evolution. However, the
majority of these systems have been obtained
and tested in simulations without being
validated on real robots. Although these
simulated models can be useful for exploring
many theoretical and practical questions, care
must be taken in using them to draw
conclusions about behavior in real world.

Only recently has the evolutionary
approach produced results that have been
validated on real robots. Lewis, Fagg and
Sodium (1992) evolved a motor controller for
a six-legged robot called Rodney that was able
to walk forward and backward. Colombetti and
Dorigo (1992) have evolved a control system
for a robot called Autonomouse to perform a
light approaching and following behavior.
Several authors have reported experiments in
which a Khepera robot was trained to perform
an obstacle avoidance task (Floreano and
Mondada (1994); Nolfi, Floreano, Miglino,
and Mondada (1994); Jacobi, Husbands, and
Harvey, 1995; Miglino, Lund, Nolfi, in press).
Yamauchi and Beer (1994) describe an
experiment in which recurrent neural networks
are evolved to solve a landmark recognition
task using a sonar. They tested the network on
a Nomad 200 robot with built-in wall-
following behavior. Harvey, Husband, and
Cliff (1994) evolved a system capable of
approaching a visual target (in the most
complex experiment the system was
successfully trained to approach a triangle
target and to distinguish it from a rectangular
one). The system was not implemented on a
standard autonomous robot but on specially
designed robotic equipment in which the robot

was suspended from a platform which allowed
translational movements in the X and Y
directions. Miglino, Nafasi, and Taylor (1995)
evolved a controller for a mobile Lego robot
that should explore an open arena. Finally,
Floreano and Mondada (1996a) evolved a
controller for a Khepera robot that performed
an homing navigation.

In some of these experiments the
evolutionary process was conducted in
simulation and then the control system
obtained was downloaded and tested on the
robot (Colombetti and Dorigo, 1992;
Yamauchi and Beer, 1994; Miglino, Nafasi,
and Taylor, 1995; Miglino, Lund, Nolfi, 1995;
Jacobi, Husbands, and Harvey, 1995). In other
cases the evolutionary process was conducted
entirely on the real robot (Lewis, Fagg, and
Sodium, 1992; Floreano and Mondada, 1994,
Harvey, Husband, and Cliff, 1994; Floreano,
and Mondada, 1996a). In other cases evolution
took place in part in simulation and then it was
continued on the real robot (Nolfi, Floreano,
Miglino, and Mondada, 1994). When the
evolutionary process was conducted partially
or totally on the real robot, in most of the
cases, the evaluation process was conducted
automatically, i.e., without requiring an
external support while in the case of Lewis et
al. performance was evaluated by human
observers. In all of the work described neural
networks were used in order to implement the
controller, with the exception of that of
Colombetti and Dorigo (Colombetti and
Dorigo, 1992) who used classifier systems.

This work clearly shows that evolutionary
robotics is a very active and promising new
field of research. However, it is also clear that
real life problems require a system capable of
producing behaviors significantly more
complex than those described above.

3. Our Framework

Having at our disposal a Khepera robot
with the gripper module (see next section) we
decided to try to develop a control system for a
robot that should keep clear an arena
surrounded by walls. The robot has to look for
"garbage", somehow grasp it, and take it out of
the arena. The task of cleaning the arena can be
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broken down into several sub-tasks: (a) to
explore the environment, avoiding the walls;
(b) to recognize a target object and to place the
body in a relative position so that it can be
grasped; (c) to pick up the target object; (d)  to
move toward the walls while avoiding other
target objects; (e) to recognize a wall and place
the body in a relative position that allows the
object to be dropped out of the arena; (g) to
release the object. Moreover, these sub-tasks
can be broken down into smaller components.
For example (a) may be broken down into (a1)
go forward when sensors are not activated;
(a2) turn left at a given speed when right
sensors are activated etc. However, we want
the complete solution to the task to emerge
through an evolutionary process and therefore
we do not need to specify the requested
behavior in detail or to analyze the
interferences between sub-behaviors.

Scheier and Pfeifer (1995) developed the
control systems for a Khepera robot that
performs a task very similar to that described
in this paper (see also Scheier and Lambrinos,
1995). The environment is an arena surrounded
by walls which contains large and small pegs
and a home base with a light source attached to
it. The robot has to bring the small pegs to its
home base. However they decided to program
by hand a set of elementary behaviors (move
forward, turn toward objects, avoid obstacles,
grasp, and bring to the nest) and let them all
run in parallel in order to obtain the desired
behavior. All that is acquired during the
training phase is the tuning of the grasp
behavior. The robot is pre-programmed to turn
around pegs and the size of the pegs
determines the way in which the angular
velocity of the robot changes in time.
Reinforcement learning is used to associate the
vectors of angular velocities that correspond to
small pegs with the grasp behavior; in other
words to classify the two types of pegs. On the
contrary we want the entire behavior and its
organization into sub-behaviors to emerge
during the evolutionary phase.

Colombetti, Dorigo, and Borghi (1996)
also studied a similar task. They trained a
mobile robot based on a commercial platform
produced by RoboSoft to collect food pieces
and to store them in a nest.  Each piece of food

is a cylinder, wrapped in violet paper, which
slides on to the floor when pushed by the
robot. Nest position is marked by another
cylinder wrapped in pink paper. The robot uses
a frontal color camera to identify the position
of food cylinders and of the nest, using colors
to discriminate. Moreover, the nest sensor uses
an odometer to get the approximate position of
the nest when it is not visible.

To build the controller the authors
decomposed the target behavior into a
collection of simple behaviors (leave-nest, get-
food, reach-nest, avoid-obstacles, coordinate-
behaviors) and allocated a behavioral module
to each of them (behavioral modules have been
implemented using classifier systems). The
behavioral modules (with the exception of the
obstacle-avoidance module, which was pre-
programmed) were trained separately and then
frozen. The coordinator module was then
trained to achieve the target behavior.
However, they decided how to decompose the
target behavior into basic behaviors while we
want also this subdivision to be the result of a
training phase.

Given our previous experience with
Khepera and the difficulties of evolving a
behavior of this type in the real robot we
decided to conduct the evolutionary process in
simulation by using an extended version of our
Khepera simulator described in Nolfi,
Floreano, Miglino, and Mondada, 1994. The
control system obtained was then downloaded
into the robot and tested in the real
environment. In this section we will describe
the robot, the environment, and the simulator.
In section 4 we will describe the architecture
of the controller and the type of genetic
algorithm and fitness formula used. In section
5 we will describe the results obtained in
simulations and on the real robot. Finally, in
section 6, we will discuss the amount of
supervision required to allow evolution to
discover a complete solution to the task.

3.1. The Robot

The robot was Khepera (Figure 1), a
miniature mobile robot developed at E.P.F.L.
in Lausanne, Switzerland (Mondada, Franzi,
and Ienne, 1993). It has a circular shape with a
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diameter of 55 mm, a height of 30 mm, and a
weight of 70g. It is supported by two wheels
and two small Teflon balls. The wheels are
controlled by two DC motors with an
incremental encoder (10 pulses per mm of
advancement by the robot), and they can move
in both directions. In addition, the robot is
provided with a gripper module with two
degrees of freedom. The arm of the gripper can
move through any angle from vertical to
horizontal while the gripper can assume only
the open or closed position. The robot is
provided with eight infra-red proximity
sensors (six sensors are positioned on the front
of the robot, and the remaining two on the
back), and an optical barrier sensor on the
gripper able to detect the presence of an object
in the gripper (the two back infra-red sensors
and others available sensors were not used in
the experiments described in this paper).

A Motorola 68331 controller with 256
Kbytes of RAM and 512 Kbytes ROM handles
all the input-output routines and can
communicate via a serial port with a host
computer. Khepera was attached to the host by
means of a lightweight aerial cable and
specially designed rotating contacts. This
configuration makes it possible to trace and
record all important variables by exploiting the
storage capabilities of the host computer and at
the same time provides electrical power
without using time-consuming homing
algorithms or large heavy-duty batteries.

3.2. The Environment

We built a rectangular arena of 60x35 cm
surrounded by walls which contains 6 target
objects. The walls were 3 cm in height, made
of wood, and were covered with white paper.
Target objects consisted of cylinders with a
diameter of 2.3 cm and a height of 3 cm. They
were made of cardboard and covered with
white paper. Targets were positioned randomly
inside the arena.

3.3. The Simulator

To evolve the controller of the robot in
the computer the simulator described in Nolfi,
Floreano, Miglino, and Mondada (1994) was

extended in order to take into account the
gripper module of Khepera.

Fig.1. The Khepera robot.

A sampling procedure was used to
calculate the activation state of the infra-red
sensors. The walls and the target objects were
sampled by placing the physical Khepera in
front of one of them, and by letting it turn
360o, recording, at the same time, the state of
the infra-red sensors at different distances with
respect to the objects. The activation level of
each of the eight infra-red sensors was
recorded for 180 different orientations and for
20 different distances. In this way two
different matrices of activation were obtained
for the two types of objects (walls and target).
These matrices were then used by the
simulator to set the activation state of the
simulated sensors depending on the relative
position of Khepera and of the objects in the
simulated environment. (When more than one
object was within the range of activation of the
sensors, the resulting activation is computed
by summing the activation contribution of
each object). This sampling procedure may
prove to be time consuming in the case of
highly unstructured environments because it
requires to sample each different type of
objects present in the environment. However,
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it has the advantage of taking into account the
fact that different sensors, even if identical
from the electronic point of view, do respond
differently. Sampling the environment
throughout the real sensors of the robot
allowed us, by taking into account the
characteristics of each individual sensor, to
develop a simulator shaped by the actual
physical characteristics of the individual robot
we have.

The effects of the two motors were
sampled similarly by measuring how Khepera
moved and turned for each of the 20x20
possible states of the two motors. At the end of
this process a matrix was obtained that was
then used by the simulator to compute the
displacements of the robot in the simulated
environment.

The physical shape of Khepera (including
the arm and the gripper), the environment
structure, and the actual position of the robot,
were accurately reproduced in the simulator
and computations were carried out with
floating point precision. Motor actions that
caused the robot to crash into the walls were
not executed in the simulated environment.
Therefore, the robot can get stuck at the walls
if it was unable to avoid them. In contrast,
when the arm crashed into a piece of trash, the
trash was moved to a new random location
within the environment.

4. Evolving the Controller

Like the majority of people who use
evolutionary methods to obtain control
systems for autonomous robots we decided to
implement the controller with a neural
network. This decision was based on several
reasons: (a) neural networks are resistant to
noise, which is massively present in
robot/environment interactions and are able to
generalize their ability in new situations; (b) it
is important that the primitives manipulated by
the evolutionary process should be at the
lowest possible level in order to avoid
undesirable choices made by the human
designer (Cliff, Harvey, and Husband, 1993)
and synaptic weights and neurons are low level
primitives; (c) neural networks can easily
exploit various form of learning during life-

time and this learning process may help and
speed up the evolutionary process (Ackley and
Litmann, 1991; Nolfi, Elman and Parisi;
1994). In the following sections we will
describe the architecture, the fitness formula,
and the form of genetic algorithm used.

4.1. The Neural Controller

We tried several different network
architectures (see below) and found that the
best architecture was a feedforward network
with 7 sensory neurons, 16 motor neurons, and
no internal neurons. The first 6 sensory
neurons were used to encode the activation
level of the corresponding 6 frontal sensors of
Khepera and the seventh sensory neuron was
used to encode the barrier light sensor on the
gripper (see Figure 2). On the motor side we
had four pairs of motor neurons that codifies
the speed of the left and right motors and the
triggering of the "object pick-up" and "object
release" procedure respectively and four pairs
of selector neurons that determined which of
the two competing output neurons got the
control of the corresponding robot's actuator
each time step (the competitor with the
corresponding highly activated selector neuron
gets control). This architecture allows modular
solutions (i.e. solutions in which different parts
of the nervous system are used in different
situations) to emerge without pre-defining the
correspondence between behaviors and
modules as is required in sub-sumption
architectures (Brooks, 1986). The other
architectures that turned out to be less effective
were: (1) a simple architecture with just 7
sensory and 4 motor neurons; (2) an
architecture with two additional recurrent
neurons; (3) an architecture with an additional
internal layer with 4 neurons; (4) an
architecture with two sets of 4 output neurons
(i.e. with two pre-defined modules), one for
the target finding and pick-up behavior and
one for the wall approaching and object release
behavior (for a systematic comparison see
Nolfi, in press).

It is important to note that the task chosen
requires a controller able to produce very
different motor responses for similar sensory
states. Let us take the case of the robot in front
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of a target, it should avoid or approach it
according to the presence or absence of a target
on the gripper (in the two cases the only
difference is the state of 1 sensor out of 7). Or
else, let us take the case of a robot in front of
an object with an empty gripper, it should
avoid or approach the object according the
type of the object; wall or target (in the two
cases the infrared sensors have only slightly

different activation values). This may explains
why modular neural networks, that can use
different neural modules in different
environmental situations, might have an
advantage in learning to produce very different
motor responses for very similar sensory
patterns with respect to a single, uniformly
connected, neural network.

Fig. 2. The control system of the robot. The 7 sensory neurons represented with gray small circles are directly connected
to the 6 frontal sensors of the robot located on the circular body of Khepera and to the light barrier sensor located on the
gripper. Two pairs of motor neurons represented with empty small circles were connected to the two motors that
controlled the wheels of Khepera while the other two were connected to the two motors of the gripper through a
controller. The four pairs of selector neurons represented with full small circles determine which of the two corresponding
output neurons got control each time step (the output neuron with the corresponding highly activated selector neuron
gained control).

The activation of the sensors and the state
of the motors are encoded each 100
milliseconds. However, when the activation
level of the "object pick-up" or of the "object
release" neurons reach a given threshold a
sequence of action occurs that may require one
or two seconds to complete (e.g. move a little
further back, close the gripper, move the arm
up, for the object pick-up procedure; move the
arm down, open the gripper, and move the arm
up again, for the object release procedure).

The activation values of the infrared
sensors (which can have 1024 different values
ranging from 0 to 1023) and the activation of
the light-barrier sensor (which can have two
values: 0 or 1023) were encoded in sensory
neurons as floating point values between 0.0
and 1.0. The logistic function was used to
determine the activation of the motor neurons.
The activation of the first two motor neurons
controlling the left and right wheels was
transformed into 21 different integer values
ranging from -10 to +10 (max. speed backward
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and forward, respectively). The activation of
the third and fourth motor neurons controlling
the picking-up and releasing procedures,
respectively, were thresholded into two values
(1 = trigger the corresponding procedure, 0 =
do not trigger the corresponding procedure).

To accomplish the task the weights of the
neural network should be set in such a way
that Khepera can perform the following
sequence of behaviors:

z explore the environment, avoiding the
walls
z recognize a target object and place the
body in a relative position that allows it to
be grasped
z pick up the target object
z move toward the walls while avoiding
other target objects
z recognize a wall and place the body in a
relative position that allows the object to be
dropped out of the arena
z release the object

4.2. The Genetic Algorithm

To evolve neural controllers able to
perform the task described above we used a
form of genetic algorithm. We began with 100
randomly generated genotypes each
representing a network with the architecture
described in the previous section and a
different set of randomly assigned connection
weights. This is Generation 0 (G0). Networks
are allowed to "live" for 15 epochs, with each
epoch consisting of 200 actions (about 8
seconds in the simulated environment using an
IBM RISC/6000 and about 300 seconds in the
real environment). At the beginning of each
epoch the robot and the target objects were
randomly positioned in the arena. At the end of
their life, individual robots were allowed to
reproduce. However, only the 20 individuals
which had accumulated the most fitness in the
course of their life reproduced (agamically) by
generating 5 copies of their neural networks.
These 20x5=100 new robots constituted the
next generation (G1). Random mutations were
introduced in the copying process, resulting in
possible changes of the connection weights (all
100 individuals were mutated). Mutations were
obtained by substituting 2% of randomly

selected bits with a new randomly selected
value (as a consequence, about 1% of the bits
were actually changed). The process was
repeated for 1000 generations.

The genetic encoding scheme was a direct
one-to-one mapping. The encoding scheme is
the way in which the phenotype (in this case
the connection weights of the neural network)
is encoded in the genotype (the representation
on which the genetic algorithm operates). The
one-to-one mapping is the simplest encoding
scheme in which one and only one 'gene'
corresponds to each phenotypical character.
(For more complex encoding schemes also
allowing evolution of the neural architecture,
see Cliff, Harvey and Husband, 1993; Nolfi,
Miglino, and Parisi, 1994).  In our case, to
each of the 128 parameters (112 connection
weights and 16 biases) corresponds a sequence
of 8 bits in the genotype which has a total
length of 1024 bits. Normal binary encoding
was used to translate the 8 bits to one weight
value between -10.0 and + 10.0. Connection
weights and biases are fixed (i.e. there is not
learning during individual’s lifetime).

4.3 The Fitness Formula

The fitness formula is the way in which
individuals are evaluated in order to decide
who is allowed to reproduce.

In our case, the simplest thing would be
to score individuals by counting the number of
objects correctly released outside the arena.
However, the probability that a network with
random weights could succeed in doing the
complete sequence of correct behaviors (i.e. to
find, grasp and bring out of the arena an
object) even once is extremely low, all
networks of the initial generations would be
scored with the same 0 values and, as a
consequence, the selection process would not
have any affect.

In order to avoid this problem one can use
a more complex fitness formula that allows
individual differences in behavior to be
captured also in initial generations. We used a
fitness formula with 2 components and in
addition we exposed the robot to useful
learning experiences (see below). This meant
that individuals were scored not only for their
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ability to perform the complete sequence of
correct behaviors but also for their ability to
perform portions of the complete sequence. In
particular, we increased the fitness of an
individual in the following cases:

z if the robot had an object in the gripper
z if the robot released the object outside

the arena

In addition to add a fitness component,
we found it important to expose the robots to
useful learning experiences during the
evolutionary process in order to allow the
evolutionary process to discover a solution to
the problem. In particular, we found it
important to increase the number of times the
robot, while carrying a target object,
encountered another target in order to force the
evolutionary process to select individuals able
to avoid targets when the gripper was full. This
was accomplished by artificially positioning a
new target object in the frontal area of the
robots each time they picked up a target (i.e.
by controlling the learning experiences of the
robot).

Individuals were scored with 1 for each
cycle they had an object in the gripper and
with 2000 for each object correctly released
outside the arena (an high score was used in
order to force the evolutionary process to
select individuals able to performe the entire
sequence of behaviors).

5. Results

We run 10 simulations starting with
populations of 100 networks with randomly
assigned connection weights. Each simulation
lasted 1000 generations (about 10 hours using
a standard IBM RISC/6000). The evolved
neural controllers were then downloaded on to
the real robot and tested in the real
environment. In the next sections we describe
the results obtained in the simulated and real
environments.

5.1. Performance in the simulated environment

If we measure the number of epochs (out
of 15) in which individuals: pick up a target,
pick up and correctly release a target, or fail

(by crashing into a target or a wall) throughout
generations we can see in Figure 3 that, in the
very first generations, individuals are able to
pick up target objects only occasionally while
most of the time they crash into them or into
walls. However, in the next 50 generations, the
number of crashes significantly decreases, the
number of targets picked up increases, and
individuals that are able to release the targets
outside the arena, even if only occasionally,
are selected. Later on, individuals that are
more and more able to correctly pick up targets
and to release them out of the arena are
selected. After 1000 generations individuals
are able to perform the entire sequence of
correct behaviors 11.8 out of 15 epochs on
average, and 15 out of 15 epochs in the case of
the best individual of the most successful
simulation.

generations

0

3

6

9

12

15

0 100 200 300 400 500 600 700 800 900 1000

pick-up

release

crash

Figure 3. Number of epochs out of 15 in which
individuals: crash into walls or other targets; pick-up an
object but do not release it; pick-up and then release an
object outside the arena. Average of the best individuals
of each generation for 10 replications of the simulation.
Data smoothed by calculating rolling averages over
preceding and succeeding 3 generations.

Figure 4 represents the behavior of a typical
evolved individual and the corresponding state
of the motor and sensory neurons throughout
600 cycles. The robot, which started from the
top-right part of the arena, after correctly
picking-up and releasing 5 targets, is
approaching the last target still in the arena. As
can be seen from the trace on the terrain and at
the activation state of the motors, when the
robot perceives something, it starts to move
back and forth for a variable amount of time
until it recognize the perceived object. It then
acts consequently by picking-up objects and
avoiding walls if the gripper is empty and by
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otherwise avoiding targets and releasing the
object outside the wall. It should also be noted
that during the back and forth phases the robot
also modifies its orientation to correctly
recognize the perceived object and at the same
time to place itself in the right position in

order to pick up or release a target or in order
to avoid a wall or a target, depending on the
circumstances (for more details on how the
robot classify the two type of objects see Nolfi,
1996).

Figure 4. The top part of the figure represent the behavior of a typical evolved individual. Lines represent walls, empty
and full circles represent the original and the final position of the target objects, respectively, finally the trace on the
terrain represents the trajectory of the robot.  The bottom part of the figure represents the state of the four motor neurons
that have control of the motors and of the 7 sensors (the 6 infrared and the light-barrier sensor, respectively) throughout
time. P1 to P5 and R1 to R5 indicate the phases in which the individual picked-up and released the 5 corresponding
targets.  Between P1 and R1 and between P4 and R4 the reader can recognize two phases in which the robot avoided the
target positioned in the middle while carrying another target.



5.2. Performance in the real environment

We downloaded on Khepera the neural
controllers of the best individual of each
simulation (i.e. the individuals of the last
generation with the best performance in the
simulated environment) and tested them in the
real environment.

Figure 5 shows a comparison between the
performance in the simulated and real
environment for the best individuals of the last
generation for each simulation. As can be seen,
in most cases a decrease in performance is
observed in the real environment. However, all
individuals were able to perform the entire
sequence of actions correctly at least 40% of
the time. The best individual (i.e. the best
individual of simulation 6) was able to
correctly pick-up targets 93% of the time, it
always released targets correctly while
avoiding other targets, never crashed into the
walls, and never tried to incorrectly grasp the
walls.
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Figure 5. Percentage of times in which the entire
sequence of behaviors (to find, to pick up, and to release
a target outside the arena) is accomplished correctly in
the simulated and real environment. Empty and full
histograms respectively represent performance in the
simulated and real environment of the best individual of
the last generation for 10 replications of the simulation.
Each individual was evaluated for 150 trials in the
simulated environment and for 15 trials in the real
environment.

By letting the 10 best individuals of the
last generation free to interact with the real
environment for 5000 cycles we found that 7
out of 10 individuals were able to completely
clean the arena by removing 5 target objects.  6
of these individuals were able to accomplish

the task without showing any incorrect
behavior (e.g. to crash into the walls, to try to
grasp a wall or to release a target over another
target). The best individual was able to
completely clean the arena in 761 cycles
(about 1.5 minutes). Given this successful
performance it did not seem necessary to
continue the evolutionary process in the real
environment to allow individuals to adapt to
the differences between the simulated and the
real environment (see Nolfi, Floreano,
Miglino, and Mondada, 1994).

The ability to collect targets generalized
also to objects with different dimensions and
shape with respect to those used in the training
phase (i.e. cylinders with a diameter of 2.3cm).
Evolved individuals were also able to collect
and correctly depose of objects that were both
larger and smaller in diameter than the objects
encountered during training.

6. Emergence versus supervision

In principle, artificial evolution can work
with no supervision at all beside a criterion for
evaluating how much evolving individuals
accomplish the desired task. The same
framework can be applied in order to evolve
simple or very complex tasks. However, as we
saw in section 2, up to now only relatively
simple tasks have been accomplished with this
methodology. This limited result contrasts
with the extraordinary large number of life
forms, most of them far more complex than
any human artefact, produced by natural
evolution. One can argue that natural evolution
has had at its disposal huge resources and an
enormous amount of time while experiments
in artificial evolution last only a few hundred
generations and are carried on in very simple
environments. However, people who work in
this field know that, in a typical experiment,
after one or few hundred generations, artificial
evolution stabilizes on a desirable or
undesirable state and nothing new happens.

The lack of power of current models using
artificial evolution can be explained in several
ways. Certainly, it could be that these models
lack some important property of natural
evolution. For example it could be that the
way in which genetic information is
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represented and translated into the
corresponding phenotype is inadequate.
However, we think that there is another
important reason: using a very specific
selection criterion implies that the evolutionary
process is used in at least partially distorted
way; as an optimization technique. Natural
evolution does not optimize any specific
competence in addition to reproductive ability.
It discovers competences because they can
enhance reproductive success. However, this is
accomplished without any specific constraint.
In natural organisms, complex competencies
(like the ability to fly or to build a nest) are
acquired by natural organisms by modifying
pre-existing competencies acquired for other
reasons (Gould, 1991). As a consequence, it is
not surprising that specific complex behaviors
are difficult to obtain through artificial
evolution if one starts from scratch.

How we can overcome this problem if we
want to develop artefacts that have specific
competencies? There are two possibilities; one
is to imitate nature, leave the evolutionary
process free to discover competencies
indirectly useful for a very general purpose
(such as the ability to reproduce) and hope that
the desired competencies emerge; the second is
to try to force evolution in the right direction
by favouring the emergence of competencies
that in turn can favour the emergence of the
required competencies. In both cases
emergence would play an important role but in
the second case a certain amount of
supervision would be introduced in order to
"canalize" the evolutionary process.

Constraints that canalize the evolutionary
process can be introduced in several ways: by
favouring the emergence of basic competencies
with the introduction of additional components
in the fitness function, by controlling the type
of experiences to which individuals are
exposed during the evolutionary phase, and by
modifying the body of the individuals or their
internal organization (i.e. internal architecture).
In the case of the task discussed in this paper,
in order to obtain the ability to keep the arena
clean, we found it necessary:

(a) to add an additional component in the
fitness function (a reward for the ability

to pick up objects) to favour the
emergence of the corresponding ability.

(b) to increase the frequency of the stimuli
corresponding to the situation: "object in
front of the robot and object on the
gripper" to force the robot to learn to
avoid targets while carrying other
targets.

(c) to use an emergent modular architecture
for the control system to allow a
modular solution to be selected by the
evolutionary process.

These constraints proved to be necessary
experimentally because, by removing one or
more of them, a significant decrease, on
average, in the ability to perform the garbage
collecting task was observed. It is interesting
however to note that a loss in performance is
observed also on adding additional constraints.
In the first simulations we did, we used a
fitness formula with 10 components. Later on
we realised that 7 of them not only were
unnecessary but actually retarded the evolution
of correct behaviors. The 7 non useful
components were as follow: (1) a reward when
the robot is close to the target object; (2) a
reward if the target object is in front of the
robot; (3) a reward if the robot tries to pick up
the object; (4) a reward if the robot, when it
has an object on the gripper, gets close to a
wall; (5) a reward for the ability to bring
objects out of the walls; (6) a punishment
when the robot crashes into walls while
carrying an object; (7) a punishment when the
robot releases the object on to another target.

Figure 6 shows the number of targets
correctly released outside the arena throughout
generations for simulations with 1, 3, and 10
components (average results for 10
replications). As can be seen, optimal
performance is obtained using the fitness
formula described in section 4.3 which has 3
components. By removing the two additional
components, individuals never acquire the
ability to perform the task. By adding further 7
components to the fitness formula, a delay in
the emergence of the required ability is
observed in the first 200 generations.
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Figure 6. Number of epochs (out of 15) in which
individuals pick up and then release a target object
outside the arena for fitness formulae with 1, 3, and 10
components throughout generations. Each curve
represents the average of the best individuals of each
generation for 10 replications of the simulation. Data
smoothed by calculating rolling averages over preceding
and succeeding 3 generations.

7. Discussion

Intelligent autonomous robots should be
able to use sensory information to behave in a
external environment. As the environmental
complexity grows and the task becomes more
complex, the design of the system becomes
more and more difficult. To overcome this
problem the behavior-based approach
proposed by Brooks (1986) uses the idea of
designing several simple sensory-motor
processes and a coordination technique.
However, one can argue that even the design
of the simple base behavior may result difficult
(see Nolfi, 1996) and that the co-ordination
between them may become immanageable as
soon as the number of required basic behaviors
increase. Evolutionary robotics allows to
overcome these problems by letting the entire
behavior of the system, including its
organization into basic behaviors and the co-
ordination between them, emerge through a
process based on selection and differential
reproduction (see Nolfi, in press).

In principle, by using this approach, the
design process may be reduced to the choice of
the criterion for evaluating to what extent
evolving individuals accomplish the desired
task. However, we showed that, in the case of
relatively complex tasks like that presented in
this paper, this is insufficient. Some additional
intervention is needed to canalize the
evolutionary process in the right direction.

This canalization process can be accomplished
in several ways: by adding components to the
fitness formula that may favour the emergence
of competencies that in turn can favour the
emergence of the required ability; by
manipulating the type of stimuli individuals
experience during the evolutionary phase, by
choosing the architecture of the control system
etc.

We also showed that the amount of
canalization pressure should be kept as small
as possible. The addition of unnecessary
constraints can delay (and even prevent) the
evolution of the desired behavior. It is
interesting to note for example, that the
emergent modular architecture, which allows
the organization into sub-behaviors and their
co-ordination to emerge during the
evolutionary phase, outperforms the
architecture in which the organization into sub-
behaviors is designed by hand. This despite the
emergent modular architecture requires a
double number of weights and as a
consequence implies that a much larger space
has to be searched by the genetic algorithm.
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