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ABSTRACT

In the simplest scenario of two co-
evolving populations in competition
with each other, fitness progress
is achieved at disadvantage of the
other population’s fitness. The ev-
erchanging fitness landscape caused
by the competing species (named
the “Red Queen effect”) makes the
system dynamics more complex, but
it also provides a set of advantages
with respect to single-population
evolution. Here we present results
from an experiment with two mobile
robots, a predator equipped with vi-
sion and a much faster prey with
simpler sensors. Without any ef-
fort in fitness design, a set of in-
teresting behaviors emerged in rela-
tively short time, such as obstacle
avoidance, straight navigation, vi-
sual tracking, object discrimination
(robot vs. wall), object following,
and others. Although such exper-
iments cannot yet be performed in
real-time on populations of robots
for technical reasons, the approach
seems promising.

1 Competitive Co-Evolution

Competitive co-evolution has recently attracted consid-
erable interest in the community of Artificial Life and
Evolutionary Computation. In the simplest scenario of
two co-evolving populations, fitness progress is achieved
at disadvantage of the other population’s fitness. Al-
though 1t is easy to point out several examples of such
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situation in nature (e.g., competition for limited food re-
sources, host-parasite, predator-prey), it is more difficult
to analyze and understand the importance and long-term
effects of such “arms races” on the development of spe-
cific genetic traits and behaviors. An interesting com-
plication is given by the “Red Queen effect”! whereby
the fitness landscape of each population is continuously
changed by the competing population. Given the rela-
tive lack of empirical evidence for the importance of the
Red Queen effect on biological evolution, Artificial Life
techniques seem well-suited to study this penomenon
(Cliff and Miller, 1995). For example, Ray’s “Tierra sys-
tem” (1991) and Sims’ creatures (1994) are based on co-
evolutionary competing species; also, several other sim-
ulated eco-worlds make use of co-evolving species and
competitive fitness schemes (Menczer and Belew, 1993;
Yeager, 1994). Some researchers have attempted to pro-
vide a theoretical understanding of the underlying com-
plex dynamics; notably among others, Axelrod (1989)
in the context of the Iterated Prisoner’s Dilemma, Ren-
shaw (1991) by modeling spatially distributed popula-
tions, and Kauffman (1992) in the extended framework
of his “NKC” class of statistical models of rugged fitness
landscape .

From a computational perspective, competing co-
evolutionary systems are appealing because the ever-
changing fitness landscape, caused by the struggle of
each species to take profit of the competitors’ weak-
nesses, could be potentially exploited to prevent stagna-
tion in local maxima. Hillis (1990) reported a significa-
tive improvement in the evolution of sorting programs
when parasites (programs deciding the test conditions
for the sorting programs) were co-evolved , and similar
results were found by Angeline and Pollack (1993) on
co-evolution of players for the Tic Tac Toe game. Koza

IThe Red Queen is a figure, invented by novelist Lewis Carroll,
who was always running without making any advancement because
the landscape was moving with her.



(1991, 1992) applied Genetic Programming to the evo-
lution of pursuer-evader behaviors and Reynolds (1994)
observed in a similar scenario that co-evolving popula-
tions of pursuers and evaders display increasingly bet-
ter strategies. Cliff and Miller realised the potentiality
of co-evolution of pursuit-evasion tactics in evolution-
ary robotics. In the first of a series of papers (Miller
and Cliff, 1994), they provided an extensive review of
the literature in biology and in differential game theory
and introduced their 2D simulation of simple robots with
“eyes”. Later, they proposed a new set of performance
and genetic measures in order to describe evolutionary
progress which could not be otherwise tracked down due
to the Red Queen effect (Cliff and Miller, 1995). Re-
cently, they described some of the results where simu-
lated robots with evolved eye-morphologies could either
evade or pursue their competitors of several generations
earlier and proposed some applications of the approach
in biology and in the entertainment industry (Cliff and
Miller, 1996).

1.1 Prospects for the Red Queen in
Robotics

Despite the promising achievements described above,
if one carefully looks at the results described in
the literature focusing on competitive co-evolution of
pursuit-evasion behaviors, it is easy to notice that co-
evolutionary benefits often come at the cost of several
thousand individuals per population (Reynolds, 1994),
several hundred generations (Cliff and Miller, 1996), or
repeated trials of evolutionary runs with alternating suc-
cess (Sims, 1994). Moreover, since all the experiments
have been conducted in simulation, often the results can-
not be directly applied to real robots, either because
agent descriptions are too abstract or technically un-
feasible, or because the fitness function takes into ac-
count global information (such as the distance between
the competing agents). All these facts seem to greatly
limit any prospect of exploiting the Red Queen effect
for evolution of robotic controllers in the real world and
for engineering purposes. The focus of this paper is an
investigation of the feasibility of this approach in more
realistic conditions for evolutionary robotics.

We have been attracted to competing co-evolutionary
robotics for two main reasons: the prospect of a method-
ology that does not require specification of complex fit-
ness functions to evolve efficient behaviors and the intrin-
sic complex dynamics of an elegantly-simple setup. Def-
inition of a fitness function in evolutionary robotics is of-
ten a painstaking process (Mataric and Cliff, 1996) which
impairs automaticity of controller development and re-
duces behavioral autonomy of the robot. Complications
arise from the tendency of genetic algorithms to exploit
minimalist solutions which often do not match the ex-
pectations of the experimenter; moreover, if one wishes

to conduct the evolutionary run entirely on the robot (or
also in the case when only the final phase of evolution
is carried out on the real robot (Nolfi et al., 1994)), the
fitness function cannot be based on variables other than
those directly available in real time to the robotic plat-
form. Although some of us have previously attempted to
devise ways of reducing effort in fitness design (Floreano
and Mondada, 1996a), those results cannot yet be con-
sidered fully satisfactory with respect to this issue. On
the other hand, co-evolutionary pursuit-evasion provides
a rich set of complex dynamics which are well-suited to
study other interesting 1ssues on which we have indulged
in our recent research on evolution of neurocontrollers,
such as rapid adaptation during life (Floreano and Mon-
dada, 1996b), various schemes of genetic representation
(Nolfi and Parisi, 1995; Calabretta et al., 1996), and dif-
ferent network architectures (Nolfi, 1997). However, in
this paper we will leave out these latter issues (which are
currently being evaluated), and focus on the first set of
results.

The main goal of the experiments described here
consists in studying the feasibility of co-evolutionary
pursuit-evasion for evolving useful neurocontrollers for
two Khepera robots in a simple but realistic scenario.

2 Method

We decided to study pursuit-evasion as a metaphor for
predator-prey, this being a quite common and sugges-
tive situation in nature. As often happens, predators
and preys belong to different species with different sen-
sory and motor characteristics. Thus, we employed
two Khepera robots, one of which (the Predator) was
equipped with a vision module while the other (the Prey)
had a maximum available speed set to twice that of the
predator (Figure 1). Both individuals were also provided
with eight infrared proximity sensors (six on the front
side and two on the back) which had a maximum detec-
tion range of 3 cm in our environment. The two species
would evolve in a square arena of size 47 x 47 cm with
high white walls so that the predator could always see
the prey (if within the visual angle) as a black spot on a
white background.

Running co-evolutionary experiments with two or
more robots within the same environment causes prob-
lems with the cables that connect the robots to the work-
station for power supply and information exchange (see
(Floreano and Mondada, 1994) for detailed description
of this methodology). Therefore, we decided to resort to
a particular type of simulation developed and extensively
tested on Khepera by some of us: Instead of employing
a mathematical model of the sensors and motors (which
inevitably causes problems when the evolved controllers
are downloaded to the physical robot due to non-uniform
noise and different response types of each sensor), it has



Figure 1. Right: The Predator is equipped with the vision module (1D-array of photoreceptors,
visual angle of 36°). Left: The Prey has a black protuberance which can be detected by the predator
everywhere in the environment, but its maximum speed is twice that of the predator. Both Predator
and Prey are equipped with 8 infrared proximity sensors (max detection range was 3 cm in our

environment).

been shown that for geometrically-simple environments
one can reduce discrepancies between behaviors in sim-
ulation and on the real robot by sampling sensor activ-
ity at different distances and angles of the robot from
the objects of the world (see (Miglino et al., 1996) for
details). We have thus employed the same methodol-
ogy and sampled infrared sensor activity of each robot
in front of a wall and in front of another robot. These
values were then separately stored away and accessed
through a look-up table depending on the faced object.
Displacement of the robots was computed by passing to
the simulator a vector of wheel velocities (positive and
negative values standing for motion in opposite direc-
tions) and calculating the new z, y position as follows

. LV +VrY . Vi —Vr 1
yt-l—l = <§m) Sin (Tt) ( )
[ELL + VR] [1 — cos (LL — VRt)] (2)

2V —Vr L
where Vi, Vg are the velocities applied to the left and
right wheel respectively, L is the inter-wheel distance,
and t is the amount of time for which the set of wheel
speed 1s maintained. Given the characteristics of the PID
controller and physical friction and slippage, the maxi-
mum deviation for each wheel at a speed of 100mm/s
is £1% with standard deviation ¢ = 0.5 (Maechler,
1997). In our simulations we have set the maximum
wheel speed in each direction to 80mm/s for the preda-
tor and to 160mm/s for the prey. Since wheel velocities
were updated very often (¢t = 100ms), the maximum er-
ror that we could expect was 0.008mm for the predator
and 0.016mm for the prey, absolutely negligible values
with respect to the sensor characteristics. As a conserva-
tive measure, if the simulated robots attempted to rotate
against an obstacle, their position was not updated (this

solution was already successfully employed by Miglino et

al. (1996)).

Tr41

Simulation of the visual input required different con-
siderations. The vision module K213 of Khepera is an
additional turret which can be plugged-in directly on
top of the basic platform. It consists of a 1D-array of 64
photoreceptors which provide a linear image composed
of 64 pixels of 256 gray-levels each, subtending a view-
angle of 36°. The optics are designed to bring into fo-
cus objects situated at distances between bem and 50cm
while an additional sensor of light intensity automati-
cally adapts the scanning speed of the chip to keep the
image stable and exploit at best the sensitivity of re-
ceptors under a large variety of illumination intensities.
The K213 vision turret incorporates a private 68HC11
processor which 1s used for optional low-level processing
of the scanned image before passing it to the robot con-
troller. One of these options is detection of the position
in the image corresponding to the pixel with minimal
intensity (in this case, only one byte of information is
transmitted). Therefore, instead of simulating the re-
sponse of the 1D-array of receptors resorting to complex
and time-consuming ray-tracing techniques, we exploited
the built-in facility for position detection of the pixel
with minimal intensity and divided the visual angle in
five sectors corresponding to five simulated photorecep-
tors (Figure 2, left). If the pixel with minimal intensity
was within the first sector, then the first simulated pho-
toreceptor would become active; if the pixel was within
the second sector, then the second photoreceptor would
become active; etc. We made sure in a set of prelimi-
nary measurements that this type of input reduction was
largely sufficient to reliably capture and represent all the
relevant visual information available to the predator.

In line with some of our previous work (Floreano and
Mondada, 1994), the robot controller was a simple per-
ceptron with two sigmoid units and recurrent connec-
tions at the output layer. The activation of each output
unit was used to update the speed value of the corre-
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Figure 2. Left and center: Details of simulation of vision, of neural network architecture, and of
genetic encoding. The prey differs from the predator in that it does not have 5 input units for vision.
Each synapse in the network is coded by five bits, the first bit determining the sign of the synapse and
the remaining four its strength. Right: Initial starting position for Prey (left, empty disk with small
opening corresponding to frontal direction) and Predator (right, black disk with line corresponding
to frontal direction) in the arena. For each competition, the initial orientation is random.

sponding wheel every 100ms. In the case of the predator,
each output unit received connections from five photore-
ceptors and from eight infrared proximity sensors (Fig-
ure 2, center); in the case of the prey, each output unit re-
ceived input only from 8 infrared proximity sensors, but
its activation value was multiplied by 2 before setting the
wheel speed. This structure, which is well-suited for evo-
lution of Braitenberg-like obstacle avoidance (because
of its symmetrical architecture and direct input-output
connections), was chosen for being a minimally sufficient
architecture to evolve something interesting while main-
taining system complexity at a manageable level; for the
same reason, the architecture was kept fixed, and only
synaptic strengths and output unit threshold values were
evolved.

In order to keep things as simple as possible and given
the small size of the parameter set, we used direct genetic
encoding (Yao, 1993): each parameter (including recur-
rent connections and threshold values of output units)
was encoded on five bits, the first bit determining the
sign of the synapse and the remaining four its strength.
Therefore, the genotype of the predator was 5 x (30
synapses + 2 thresholds) bits long while that of the prey
was b x (20 synapses + 2 thresholds) bits long. Two pop-
ulations of 100 individuals each were co-evolved for 100
generations. Each individual was tested against the best
competitors of the ten previous generations (a similar
procedure was used in (Sims, 1994; Reynolds, 1994; Cliff
and Miller, 1995)) in order to improve co-evolutionary
stability. At generation 0, competitors were randomly
chosen whithin the same generation, whereas in the other
9 initial generations they were randomly chosen from the
pool of available best individuals (2 at generation 3, 3 at
generation 4, etc.). For each competition, the prey and
predator were always positioned on a horizontal line in
the middle of the environment at a distance correspond-
ing to half the environment width (Figure 2, right), but
always at a new random orientation. The competition

ended either when the predator touched the prey or af-
ter 500 motor updates (corresponding to 50 seconds at
maximum on the physical robot). The fitness function
®. for each competition ¢ did not require any sensor or
motor measurement, nor any global position measure; it
was simply TimetoContact normalized by the maximum
number of motor updates T¢C' for the predator pr, and
1 —=TtC for the prey py, further averaged over the num-
ber of competitions. Therefore the fitness values were
always between 0 and 1, where 0 means worst. Individ-
uals were ranked after fitness performance in descend-
ing order and the best 20 were allowed to reproduce.
One-point crossover was applied on all randomly paired
strings with probability pe, and random mutation (bit
switching) was applied to each bit with constant proba-
bility pm = 0.05.

3 Results and Analyses

We performed 6 evolutionary runs of 100 generations
each, three of them with pc = 0.1 and three with
pe = 0.9. We did not attempt to optimize either the
number of individuals per population or other genetic op-
erators. Fach run took approximately 10 hours on a Sun
SparcStation 20, even though this time could be reduced
by optimizing the computer code. We did not notice sig-
nificative differences between sets of runs with different
crossover probability and among single runs within each
set (with respect to all the measures and analyses re-
ported here). Figure 3, left side, shows the average pop-
ulation fitness for one run with pc = 0.1. As in (Sims,
1994, p. 36), a set of oscillations in fitness emerge after
an initial short period. Since these oscillations take place
at different frequencies and start at different points in
different evolutionary runs, averaged measures over mul-
tiple runs would not convey any information. Therefore,
for clarity of explanation, we give data for a single run.
As compared to (Sims, 1994, p. 36), we never observed
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Figure 3. Left: Average population fitness across generations for predator (pr) and prey (py). Data
points from a single run. Right: Genetic bitmap of the two final populations. Only the first bit per
synapse, which determines the sign of the synapse, is plotted: black means a negative synapse, white
a positive synapse. Each line correspond to the genotype of one individual in the population. The
first half of each genotype corresponds to the synapses for the left motor neuron, the remaining half
to the synapses for the right motor neuron. The genotype for the predator is longer (that is, squares

are smaller) because it includes visual inputs too.

dominance of one population against the other in any of
our evolutionary runs. However, the fitness for the prey
always tended to generate higher peaks due to initial po-
sition advantage (even in the case of the worst prey and
best predator, the latter will always take some time to
reach the prey from its starting position). Hundred gen-
erations were always sufficient to evolve the full range of
pursuit-evasion behaviors which will be described below.

After 100 generations, each population displays a good
degree of convergence (also when pc = 0.9), as one can
see from the bitmap of the genotypes of all individu-
als of the last population displayed on the right side
of Figure 3. Genetic maps show only the value of the
first bit of each synapse which determines the sign of
the synapse and thus gives a rough idea of the underly-
ing neural structure. This structure, which is symmetric
around 1its center, indicates that most of the individuals
in both populations are a variation of a Braitenberg vehi-
cle (equipped with vision for the predator); more details
and analyses will be given elsewhere. However, average
fitness measures do not tell us much of what happens at
the level of individual tournaments, especially when the
populations have not yet converged.

3.1 Individual Tournaments

An individual tournament is one or more competitions
between a single individual and one or more of his com-
petitors. Individual tournaments tell us what happens at
the microlevel and provide useful clues about the dynam-
ics of competitive co-evolution. However, performance
oscillations caused by the Red Queen effect make it dif-
ficult to visualize real changes and progress in both pop-
ulations. Cliff and Miller have developed an interesting
set of measuring techniques for individual tournaments
in competing co-evolutionary systems (Cliff and Miller,
1995), which we will apply below. The fitness plot of

the best individual at each generation against the best
competitors of the ten preceding generations (Figure 4,
left center) shows a set of oscillations which are approx-
imately in opposite phase. The development of a better
strategy by one of the species corresponds to a decrement
in performance of the competing species. Major changes
in behavioral strategies are reflected at the genetic level.
On the top and bottom left of Figure 4 one can see —
for the predator and prey, respectively— the Hamming
distance between the genotype of the best individuals
for each generation. Every square in the matrix repre-
sents the normalized Hamming distance between two in-
dividuals; the darker a square is, the more different the
two genotypes are.The white diagonal line (Hamming
distance zero) is the identity comparison. Small white
areas, which indicate almost identical genotypes, corre-
spond to periods of similar fitness in the performance
graph. Since these areas appear in the neighborhood
of the matrix diagonal, only best individuals which are
close in evolutionary time have similar genotypes. It
also means that individuals that report similar fitness,
but are distant in time, such as preys of generation 68
and 98, do not have the same genotype. Small dark
lines between white zones indicate an abrupt change of
behavioral strategy, whereas a gradual fading of white
into gray indicates gradual genetic change (which is quite
rare here). But, does genetic diversity among the best
distant individuals imply real progress in the behavioral
strategies? Cliff and Miller (Cliff and Miller, 1995) have
devised a way of monitoring fitness performance by test-
ing the performance of the best individual against the
best competing ancestors, which they call CIAO data
(Current Individual vs. Ancestral Opponents). In ap-
plying this technique to our populations, each individual
is tested ten times against each best competing ances-
tor and the average fitness is plotted as darker squares

for higher values (Figure 4, right). CIAO graphs (for
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Figure 4. Left, center: Fitness of best individual across generations for predator (pr) and prey (py)
(smoothed using rolling average over three data points). Left, top and bottom: Hamming distance
between each best individual and all the other best individuals across generations for predator and
prey. Black means that all genes between the two individuals are different, white means that the
two individuals are identical. Right, top and bottom: CIAO graphs: Average fitness over ten tour-
naments between the best individual and each of the best competitors of the preceding generations,
respectively for prey and predator; more informations on this measuring technique is available on
the paper by CIiff and Miller (1995). Black is best, white is worst. Slight asymmetries between the
two graphs are due to random initial orientations for each tournament.

predator and prey) show two interesting facts. The first
is that individuals of later generation, although they re-
port a high fitness during evolutionary training, do not
necessarily score well against competitors of much earlier
generations. For example, the best predators of gener-
ations 85-95 can hardly catch best preys of generations
0-10, 35-50, and 70-80. This indicates that during gener-
ations 85-95, predators developed a behavioral strategy
that was tuned to their preceding ten best competitors
(let us remind that during co-evolution each individual
is tested against the best competitor of the preceding ten
generations). Furthermore, the Scottish tartan patterns
of these CIAQO graphs indicate periods of relative sta-
sis interrupted by short and radical changes of behavior,
in accordance with the Hamming graphs on the left of

figure 4.

3.2 Master Tournament

The analyses described above have revealed much about
the dynamics of our competing co-evolutionary system.
For example, for optimization purposes, we know that
individuals of the final generations are not necessarily
the best individuals of the evolutionary run. The sim-
plest way to know more about our predators and preys,
is to organize a Master Tournament where each best in-
dividual is tested ten times against each best competitor
of all generations. Top of Figure 5 shows the master
fitness for each best individual across generations (fit-
ness values are averaged over ten competitions and over
hundred tournaments). A Master Tournament tells us
two things: At which generation we can find the best
prey and the best predator, and at which generation we
are guaranteed to observe the most interesting tourna-
ments. The first aspect 1s important for optimization
purposes and applications, the latter for pure entertain-
ment. The best individuals are those reporting the high-
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Figure 5. Top: Fitness of best individuals in Master Tournament. Letters indicate position of best
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played below. Bottom: Behaviors recorded at interesting points of co-evolution, representing typical
strategies. Black disk is predator, white is the prey.

est fitness when also the competitor reports the highest
fitness (marked by letters A and B in the graph). In-
stead, the most entertaining tournaments are those that
take place between individuals that report the same fit-
ness level, because these are the situations where both
species have the same level of ability to win over the
competitor. The Master Tournament also shows that
some increment/decrement of fitness in the individual
tournaments (Figure 4, left center), such as at genera-
tion 45 and generation 75, are due to slight opportunistic
adjustements between the competitors which do not re-
flect their overall performance. In the lower part of Fig-
ure 5, behaviors of best competitors at critical stages of
co-evolution, as indicated by Master Tournament data,
give a more intuitive idea of how pursuit-evasion strate-
gies are co-evolved. Initially, the predator tends to stop
in front of walls while the prey moves in circles (box 1).
Later, the prey moves fast at straight trajectories avoid-
ing walls while the predator tracks it from the center and
quickly attacks when the prey is closer (box 2). Interest-
ingly, predators develop the ability to know how distant
the preys are by using information on how fast their
target moves in the visual field. Decrement of predator
performance around generation 65 is due to a tempo-
rary loss of the ability to discriminate between walls and

preys. As shown in box 3, the predator intercepts the
prey, but it misses it crashing against the wall. Around
generation 75, we have a typical example of the best
prey (box 4); it moves in circles and, when the predator
gets closer, it rapidly avoids it. This i1s quite interesting.
Indeed, preys that move too fast around the environ-
ment sometimes cannot avoid an approaching predator
because they detect it too late (IR sensors have lower
sensitivity for a small cylindrical object, like another
robot, than for a white flat wall). Therefore, it pays
off to wait for the slower predator and accurately avoid
it. However, some predators become smart enough to
perform a small circle once they have missed the target,
and re-attack until, by chance, the prey displays a side
without TR sensors. As soon as the preys begin again
moving around the environment, the predator develops
a “spider strategy” (box 5): it slowly backs until it finds
a wall where 1t waits for the fast-approaching prey. How-
ever, this strategy does not pay off when the preys stay
in the same place (as indicated by the decrement in mas-
ter fitness and by the white patterns in the CTAO graphs
of Figure 4). Finally, at generation 99 we have a new in-
teresting strategy (box 6): the predator quickly tracks
and reaches the prey which quietly rotates in small cir-
cles. As soon as the prey senses the predator, it backs



and then approaches the predator (without touching it)
on the side where it cannot be seen; consequently, the
predator quickly turns in the attempt to visualize the
prey which rotates around it, producing an entertaining
dance.

4 Conclusion

Our work has shown that competing co-evolutionary sys-
tems can be of great interest in evolutionary robotics. In
the case described here, we have observed spontaneous
evolution og obstacle avoidance, visual tracking, object
discrimination (prey vs. wall), following, and a variety
of other behaviors without any effort in fitness design
(as compared to single population experiments (Floreano
and Mondada, 1996a)). Similarly, evolutionary time and
resources were relatively small and manageable. From an
optimization point of view, the drawback due to cycling
between alternative behavioral strategies could be easily
overcome by devising a strategy for picking out the most
appropriate individuals (Master Tournament) for one’s
own purposes (being it efficiency or fun).

At the same time, we feel that competing co-
evolutionary systems are an excellent testbed for study-
ing several important issues in evolutionary computa-
tion. One of these is the encoding strategy. Here we
have used a very simple strategy that, although perfectly
sufficient for evolving interesting behaviors in this par-
ticular setup, does not guarantee continuous progress in
more complex situations. The motivation for our choice
was the effort to keep the system simple and analyz-
able (further analysis is being currently carried out on
a set of similar experiments). On the other hand, if co-
evolution between competing species 1s indeed an impor-
tant engine of evolutionary progress in nature, a genetic
encoding that better cares of already achieved progress,
is mandatory. For example, Cliff and Miller (Cliff and
Miller, 1995) have used a much more complex encoding
strategy which seems to provide continuous evolution-
ary progress, even though at the cost of much longer
time and computational resources. Another interesting
issue is learning during life. The situation described here
seems to be one which would reward systems capable of
some form of quick adaptation during life, and 1t pro-
vides the necessary unpredictable dynamics for testing
some of the learning schemes available in the neural net-
work literature.

Although before conducing experiments in real time
on more complex robots one should devise a solution for
power supply, there seem to be good prospects for the
Red Queen in evolutionary robotics.
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