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Changing ideas about others’ 
intentions: updating prior 
expectations tunes activity in the 
human motor system
Pierre O. Jacquet1,2, Alice C. Roy3, Valérian Chambon2,4, Anna M. Borghi5,6, 
Roméo Salemme7,8, Alessandro Farnè7,8,* & Karen T. Reilly7,8,*

Predicting intentions from observing another agent’s behaviours is often thought to depend on motor 
resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored 
motor counterpart, but observers might also rely on prior expectations, especially when actions 
take place in perceptually uncertain situations. Here we assessed motor resonance during an action 
prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and 
report that experimentally-induced updates in observers’ prior expectations modulate CSE when 
predictions are made under situations of perceptual uncertainty. We show that prior expectations are 
updated on the basis of both biomechanical and probabilistic prior information and that the magnitude 
of the CSE modulation observed across participants is explained by the magnitude of change in their 
prior expectations. These findings provide the first evidence that when observers predict others’ 
intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that 
this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities 
with that observed during action selection. Such a mechanism could help arbitrate the competition 
between biomechanical and probabilistic prior information when appropriate for prediction.

Predicting and understanding other people’s behaviours is often thought to depend on processes of motor sim-
ulation or resonance1–11. Motor resonance refers to the transformation of observed movement kinematics into 
self-centered motor counterparts12 within the human mirror neuron system or action-observation network, i.e., a 
parieto-frontal network comprising visuo-motor neurons discharging both during action execution and observa-
tion. Some researchers, however, question the idea that resonating visuo-motor parameters of an observed actions 
is the only source of information used to attribute the agent’s underlying intention13–18. One reason for this is that 
motor resonance alone cannot satisfactorily deal with the uncertainty often met by an observer when interpreting 
other people’s behaviours14,19,20. Indeed, to successfully predict another agent’s behaviour the observer needs to 
deal with variations in observational contexts by exploiting, adjusting, or inhibiting certain information. Solving 
this uncertainty problem can be made easier by our ability to form prior expectations about other agents’ behav-
iours and intentions, i.e., expectations about how an agent is likely to behave in a given situation14,21,22.

Prior expectations can be modeled as the product of various sources of prior information. One source is the 
probabilistic information an observer can extract from the past distribution of an agent’s behaviour23. Another 
source is the amount of biomechanical effort (or cost) used by an agent in her/his goal-directed actions. Mounting 
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evidence shows that humans exhibit strong expectations about the biomechanical ‘optimality’ of goal-directed 
motor behaviours both in an execution and an observation context24–28. Variations in observed or planned biome-
chanical effort have also been shown to be selectively encoded within the motor system of both non-human29,30 
and human primates31. When human agents intend to hit a nail using a hammer for example, they tend to choose 
the action means that requires the least joint and muscular effort given the properties of the tool. Reciprocally, 
human observers expect other agents to exploit these ‘optimal’ action means to achieve their goals. In some sit-
uations however, probabilistic and biomechanical prior information may diverge from each other. An observed 
agent may occasionally find it beneficial to not follow biomechanical optimality rules. For example, an athlete 
might use an unfamiliar, biomechanically awkward motor strategy at a certain frequency and then suddenly 
change strategies in an attempt to deceive his opponent. Tracking biomechanical and probabilistic information 
and solving the potential conflicts between them enables human observers to narrow the number of intentions 
(or goals) that compete to explain other people’s behaviour. This results in the selection of intentions that the 
observed agent is more likely to pursue given their prior distributions21,22,32, the biomechanical constraints of the 
effector33, and the physical properties of the objects that might be used to achieve their goal34. To date, only a few 
studies have tested the contribution of biomechanical and probabilistic prior information to the prediction of 
action intentions21,22,34, and none have investigated their impact on motor resonance mechanisms.

In this study we examined how experimentally biasing prior expectations about another agent’s behaviour 
affects motor resonance during the prediction of tool-use actions. Healthy adult participants were asked to make 
predictions about an agent’s final intentions or goals (in the following manuscript we will interchangeably use 
these two terms to refer to the mentalized and actualized end-state of the action) while watching movies in 
which the agent grasped an unfamiliar tool with two different grips (power or precision) and then manipulated 
it to achieve two different goals (open the box or turn on the light). The tool was designed such that grasping it 
using a power grip with the aim of opening the box required less biomechanical effort than achieving the same 
goal using the precision grip. Likewise, grasping the tool with a precision grip with the aim of turning on the 
light required less biomechanical effort than achieving the same goal using the power grip. Thus, among the 
four possible action combinations, two were biomechanically optimal and two were suboptimal. We also varied 
the amount of visual information provided by the movies in such a way that in one condition only the type of 
grip was visible (goal-hidden movies) while in another condition both the grip and the final goal were visible 
(goal-visible movies). Unbeknownst to participants, during the block of goal-visible movies we experimentally 
biased their expectations about the goal the agent would achieve using a particular grip. To do so, the probability 
of viewing the agent using each grip to achieve the goal in a biomechanically optimal or suboptimal manner was 
varied, while the probability of viewing a given goal did not vary. Participants were randomly assigned to one 
of three groups: NO BIAS (goals achieved using optimal and suboptimal kinematics were shown equally dur-
ing the goal-visible movies); CONVERGENT BIAS (goals achieved using optimal kinematics were shown more 
frequently); DIVERGENT BIAS (goals achieved using suboptimal kinematics were shown more frequently). To 
investigate whether and how, this manipulation affected participants’ predictions in condition of visual uncer-
tainty we showed them two blocks of goal-hidden movies, before and after being exposed to one of the three 
probability biases. In both goal-hidden and goal-visible movie blocks, prior expectations and their trial-by-trial 
updates were calculated using a simple Bayesian learning scheme. From this we measured an averaged Response 
Bias (RB) which indicated preference for predicting intentions congruent or incongruent with biomechanical 
optimality. During the two goal-hidden movie blocks (one before and one after exposure to biased probabili-
ties) motor resonance35,36 was assessed by probing corticospinal excitability (CSE) using single-pulse transcranial 
magnetic stimulation (spTMS). We expected that all participants would initially show a RB towards biomechan-
ical optimality. We further expected this RB to be updated as a function of the probability distribution of the 
kinematic strategies to which they were exposed in the goal-visible movie block. If, as we hypothesize, the motor 
resonance system is sensitive to prior expectations and their updating – then CSE should be modulated by the 
type of probabilistic bias and not the grip (which was similar across all groups), and this effect should be greater 
for participants who update their prior expectations. Conversely, if motor resonance is specific for movement 
kinematics, then CSE should be unaffected by exposure to biased probabilities.

Results
Statistical analyses were performed using Statistica 8 (www.statsoft.com) and Matlab v.R2012b (The MathWorks). 
All post-hoc pairwise comparisons were carried out using Newman-Keuls test and one-tailed t-tests. A signifi-
cance threshold of P <  0.05 was set for all statistical tests.

Prior expectations (Response Bias [RB]). Bias block (goal-visible movies). To investigate whether par-
ticipants updated their prior expectations in line with the probability distributions to which they were exposed, 
we analysed the mean RB values collected during the bias block using a 2 ×  3 repeated-measures ANOVA with 
‘grip’ (power, precision) as a within-subject factor and ‘group’ (no bias, convergent bias, divergent bias) as a 
between-subject factor. The middle column of Table 1 shows the response bias for the goal-visible block separately 
for each grip and for each of the three groups and Fig. 1a shows these same data averaged across the two grips. 
The ‘grip’ ×  ‘group’ ANOVA performed on the mean RB values revealed a main effect of group (F2,41 =  283.21, 
p <  0.001): compared with the no bias group (RB =  0.06 ±  0.05), the convergent bias group had a higher RB 
(0.32 ±  0.038, p <  0.001) while the divergent bias group had a lower RB (− 0.20 ±  0.08, p <  0.001). Importantly, 
all three RB’s differed from zero (one tailed t-tests compared to 0; convergent: t =  32.44, p <  0.001, divergent: 
t =  − 9.2, p <  0.001, no bias: t =  4.37, p <  0.001), indicating that participants encoded the probabilities present in 
the goal-visible block and adapted their predictions accordingly. This analysis shows that 1) participants in the no 
bias group showed a slight preference for predicting intentions congruent with optimal kinematics (preference 
for the ‘open the box’ intention when a power grip was presented, and for the ‘turn-on the light’ intention when 
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the precision grip was presented), 2) this preference for predicting optimal kinematics was strengthened for par-
ticipants exposed to the convergent bias, and 3) participants exposed to the divergent bias preferred predictions 
congruent with a suboptimal kinematic strategy (‘open the box’ intention when a precision grip was presented, 
and ‘turn-on the light’ intention when the power grip was presented). Note that between-group differences in 
RB went hand-in-hand with between-group reaction time differences (see Supplementary Material for a detailed 
analysis RTs). Specifically, participants in the no bias and convergent bias groups had faster RTs for their preferred 
responses (optimal). Crucially, the absolute values of the RB for the convergent (0.32 ±  0.038) and divergent  
(− 0.20 ±  0.08) groups were significantly different (one-tailed t-test, t >  5.95, p <  0.0001). The greater RB for 
the convergent group was notably due to the fact that participants made more recognition errors for intentions 
achieved with suboptimal kinematics (see Supplementary Material and Supplementary Fig. S1 for a detailed 
analysis of errors). This indicates that participants exposed to the convergent bias had difficulties inhibiting the 
prepotent ‘optimal’ response, and so in spite of the fact that i) the probability of observing intentions achieved 
with ‘optimal’ actions in the convergent bias was equal to the probability of observing intentions achieved with 
‘suboptimal’ actions in the divergent bias (i.e., 80% vs 20%), ii) there was enough visual information to unambig-
uously identify between the two alternatives.

Pre-bias and post-bias blocks (goal-hidden movies). In order to assess the effect of the induced probabilistic bias 
on participants’ prior expectations in conditions of perceptual uncertainty we analysed the mean RB values from 
the pre-bias and post-bias blocks using a 2 ×  2 ×  3 repeated-measures ANOVA with ‘grip’ (power, precision) and 
‘block (pre-bias, post-bias) as within-subject factors and ‘group’ (no bias, convergent bias, divergent bias) as a 
between-subject factor. The first and last columns of Table 1 show the response bias for the pre- and post-bias 
blocks separately for both grips and for each of the three groups. Figure 1b shows these same data averaged 
across the two grips. The first thing to notice is that in the pre-bias block RB was similar for all three groups (all 
ps >  0.21) and was significantly greater than zero (one tailed t-tests compared to 0; all ts >  4.33, all ps <  0.001). 
Thus, before being exposed to biased or unbiased probabilities participants made predictions that were directed 
by default towards intentions consistent with optimal kinematic strategies (‘open the box’ when a power grip 
was presented, and ‘turn-on the light’ intention when a precision grip was presented). This by-default prediction 
mode is also apparent in the error analysis (see Supplementary Material and Supplementary Fig. S1). This was not 
the case in the post-bias block. Indeed, the ‘grip’ ×  ‘block ×  ‘group’ ANOVA revealed a significant main effect of 
‘group’ (F2,41 =  7.60, p <  0.01) and a significant interaction between ‘group’ and ‘block’ (F2,41 =  10.43, p <  0.001) 
(see Fig. 1b). While no difference in RB was observed between the three groups in the pre-bias block, in the 
post-bias block there was a significant difference between the convergent group and the two other groups (all 
ps <  0.01). The no bias group’s positive RB (consistent with predicting intentions congruent with optimal kine-
matic strategies) was unchanged by exposure to the goal-visible movies (0.13 ±  0.07 vs 0.11 ±  0.08, p >  0.53), but 
for both the convergent and divergent bias groups RB changed significantly. For the convergent bias group, RB 
increased significantly in the post-bias block (0.17 ±  0.10 vs 0.24 ±  0.08; p <  0.01), indicating that participants 
shifted their bias even further towards intentions congruent with optimal kinematic strategies. In other words, 
when they saw the power grip they more often predicted the ‘open the box’ intention than the ‘turn on the light’ 
intention, and vice versa when they saw the precision grip. The reverse was true for the divergent bias group, who 
shifted their RB towards intentions congruent with suboptimal kinematic strategies, as shown by the fact that 
RB decreased significantly in the post-bias block (0.12 ±  0.11 vs 0.06 ±  0.09, p <  0.05). In the goal-visible block, 
participants in this group were clearly biased towards intentions congruent with suboptimal kinematic strategies. 
Interestingly, while RB in the post-bias block was significantly smaller than in the pre-bias block, RB differed 
from zero only for the pre-bias block, indicating that after exposure to the divergent bias they had no preference 
for either optimal or suboptimal responses (see also the analysis of error rates in the Supplementary Material).

Corticospinal excitability (CSE). CSE modulation by exposure to biased probabilities (normalized 
MEPs). To determine whether exposure to the different probability distributions affected CSE during pre-
dictions made under conditions of visual uncertainty we analysed the normalized mean motor-evoked poten-
tials (MEP) amplitudes using a 2 × 2 × 2 × 3 repeated-measures ANOVA with ‘grip’ (power, precision), ‘block’ 
(pre-bias, post-bias), and ‘response type’ (optimal, suboptimal) as within-subject factors and ‘group’ (no bias, 
convergent bias, divergent bias) as a between-subject factor. Table 2 shows the log-transformed normalized MEP 
amplitudes for the pre- and post-bias blocks separately for each observed grip, each response type and for each of 

Pre-bias block Bias block Post-bias block

Grip Grip Grip

Power Precision Power Precision Power Precision

No bias 0.12 (± 0.02) 0.14 (± 0.02) 0.07 (± 0.02) 0.05 (± 0.01) 0.10 (± 0.02) 0.12 (± 0.02)

Convergent bias 0.16 (± 0.02) 0.18 (± 0.03) 0.32 (± 0.01) 0.32 (± 0.01) 0.23 (± 0.02) 0.24 (± 0.02)

Divergent bias 0.12 (± 0.03) 0.13 (± 0.03) − 0.20 (± 0.02) − 0.20 (± 0.02) 0.07 (± 0.03) 0.05 (± 0.03)

Table 1. Mean prior expectations (RB) towards optimal (+) or suboptimal (−) action intentions. Mean 
prior expectations (± SEM) measured as a response bias (RB) toward intentions congruent with an optimal 
(positive values) or a suboptimal (negative values) kinematic strategy. Near-zero RB values indicate that on 
average participants were not biased toward one or the other response type, whereas deviations from zero 
indicate a bias for ‘optimal’ (RB >  0) or ‘suboptimal’ action intentions (RB <  0).
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the three groups and Fig. 1c shows these same data averaged across the two grips (note that in the pre-bias block 
CSE was similar across the three groups - all ps >  0.64). The ANOVA revealed a main effect of block (F1,41 =  5.18, 

Figure 1. Prior expectations and CSE. (a) Prior expectations (± SEM) measured as the mean Response Bias 
(RB) for the bias block (goal-visible movies) for each of the three groups (no bias, convergent bias, divergent 
bias). (b) Prior expectations (± SEM) measured as the mean Response Bias (RB) for the pre- and post-bias 
blocks (goal-hidden movies) for each of the three groups (no bias, convergent bias, divergent bias). Deviations 
from 0 indicate the presence of a response bias for intentions congruent with optimal (greater than 0) or 
suboptimal kinematics (less than 0). (c) Mean normalized CSE (± SEM) in the pre-bias and post-bias blocks 
for each of the three groups. The normalized CSE (on the left vertical axis) represents the log-transformed 
percentage of mean MEP amplitude recorded during the pre-bias and post-bias blocks relative to the mean MEP 
amplitude recorded during the baseline blocks (corresponding untransformed percentages are shown on the 
right vertical axis). Deviations from 2 (100%) indicate an increase (> 2) or decrease (< 2) in CSE during action 
prediction. Asterisks indicate significant comparisons (* p <  0.05; * * p <  0.01; * * * p <  0.001).
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p <  0.05), with greater CSE in the pre-bias than the post-bias block (2.14 ±  0.24 vs. 2.09 ±  25). Neither response 
type nor grip modulated CSE or interacted with any other factors. Similar to the RB results, however, there was 
a significant interaction between the factors ‘block’ and ‘group’ (F2,41 =  3.55, p <  0.05), as CSE decreased sig-
nificantly between the pre- and post-bias blocks in the divergent bias group only (2.14 ±  0.26 vs. 1.99 ±  0.29, 
p <  0.05). To investigate the possibility that this interaction effect was a false positive (i.e., uncontrolled alpha 
inflation in the ANOVA’s results caused by the numerous possible interactions between our 4 factors) we per-
formed a Monte-Carlo permutation analysis on the CSE data37. We first created 10000 fully permutated data 
sets. On each data set we then ran the four-way ANOVA and compared the ‘block’ ×  ‘group’ interaction F value 
with that obtained with the real, non-permutated CSE data. This revealed that the probability of obtaining an F 
value greater than the one obtained with the real, non-permutated CSE data was only 2.8%, suggesting that our 
interaction effect was not a false positive. Finally, it is important to note that a CSE value of 2 corresponds to the 
baseline level of CSE and that for both the no bias and the convergent bias groups, but not for the divergent bias 
group the mean CSE level in the post-bias block was significantly greater than 2 (one tailed t-tests compared to 2; 
no bias: t =  2.56, p =  0.02; convergent: t =  2.21, p =  0.04; divergent: t =  − 0.02, p =  0.98). This suggests that motor 
resonance processes were disrupted in the condition where probabilistic information conflicted with biomechan-
ical priors.

CSE modulation by changes in prior expectations (normalized MEPs). In a final analysis we aimed to test whether 
changes in response bias (Δ RB) predicted changes in CSE (Δ CSE), and whether the direction and strength of this 
relationship varied according to the type of probabilistic bias to which participants were exposed. To do this, for 
each participant we first calculated the change in CSE between the pre- and post-bias blocks (averaged across the 
two grips) and the change in RB between these two blocks (Δ RB) (averaged across the two grips). A positive Δ RB 
indicates that expectations of observing the agent achieving his intentions using optimal kinematics increased in 
the post-bias block, whereas a negative Δ RB indicates that these expectations decreased in the post-bias block in 
favour of the opposite strategy. We then conducted a general linear model with the ‘Δ CSE’ entered as the depend-
ent variable, the ‘Δ RB’ as the continuous predictor, and the ‘group’ (no bias, convergent bias, divergent bias) as 
a three-level categorical predictor. We used a full factorial design to assess the respective contributions of the 
continuous and categorical predictors as well as their interactions. The general linear model (adjusted R2 =  0.24, 
F =  3.72, p <  0.01) revealed a main effect of the continuous predictor ‘Δ RB’ (changes in prior expectations) over 
the dependent variable ‘Δ CSE’ (changes in normalized CSE) (F1,38 =  8.29, p <  0.01). This effect was characterized 
by a positive linear relationship between the two variables, such that the more prior expectations changes, the 
more corticospinal excitability changed (β  =  0.47, p =  0.001) (see Fig. 2). Crucially, the predictive value of Δ RB 
over Δ CSE was not further modulated by ‘group’ (F2,38 =  2.42, p >  0.10). This is of primary importance because it 
indicates the presence of a general regulatory mechanism of CSE which is driven by incoming information about 
the observed agent’s likely kinematic strategy.

Discussion
The aim of this study was to test whether biasing prior expectations about other people’s behaviour modulates 
activity in the observers’ motor system in accordance with their overt predictions. When exposed to movies in 
which the agent’s goal was not visible participants initially predicted intentions congruent with biomechanical 
optimality, i.e. they expected the power grip to predict ‘open the box’ and the precision grip to predict ‘turn on 
the light’. This default response bias (RB) pattern was significantly altered during the experiment as participants 
adaptively updated their prior expectations in accordance with the type of probabilistic bias to which they were 
exposed in the goal-visible movie block (see Fig. 1a,b). This change was paralleled by a change in mean corti-
cospinal excitability (CSE), with a CSE decrease in the group exposed to the divergent probabilistic bias (i.e., 
where the agent’s kinematic strategy did not match biomechanical priors) and no change in CSE in the two 
other groups (see Fig. 1c). Importantly, a significant percentage of the variation in the change in CSE across all 
participants was accounted for by the change in their response bias. Participants with the greatest shift in prior 
expectations (increase or decrease in RB) were those who exhibited the greatest change in CSE (increase in CSE 
in the case of an increase in RB vs. decrease in CSE in the case of a decrease in RB). Overall, these results show 
that the motor system tunes its activity during prediction to reflect the type of prior information that is prefer-
entially exploited for prediction (Fig. 1c). In addition, our data demonstrate that the motor system can adjust its 

 

Pre-bias block Post-bias block

Grip Grip

Power Precision Power Precision

Response Response

Opt Subopt Opt Subopt Opt Subopt Opt Subopt

No bias 2.15 (± 0.05) 2.16 (± 0.05) 2.15 (± 0.05) 2.17 (± 0.05) 2.10 (± 0.04) 2.09 (± 0.04) 2.11 (± 0.04) 2.10 (± 0.04)

Convergent bias 2.14 (± 0.06) 2.13 (± 0.08) 2.14 (± 0.07) 2.12 (± 0.08) 2.17 (± 0.07) 2.17 (± 0.08) 2.15 (± 0.07) 2.14 (± 0.08)

Divergent bias 2.14 (± 0.07) 2.13 (± 0.07) 2.15 (± 0.07) 2.13 (± 0.07) 2.00 (± 0.08) 2.01 (± 0.07) 2.00 (± 0.08) 1.98 (± 0.07)

Table 2. Mean log-normalized CSE level for all action prediction conditions. Mean log-normalized CSE 
level (± SEM) for the pre- and post-bias blocks for each of the three groups (no bias, convergent bias, divergent 
bias groups). Values are presented separately for each observed grip (power, precision) and each response type 
(Opt =  < optimal, Subopt =  suboptimal).
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excitability according to changes in prior expectations about other people’s behaviours (Fig. 2). We propose that 
this adjustment might reflect a regulatory control mechanism that shares some similarities with that observed 
during action selection38. In the present case, however, this mechanism does not operate at the level of action 
representations. Instead, the CSE modulation appears to reflect the observer’s capacity to disengage from bio-
mechanical priors when they conflict with probabilistic information. That is, when biomechanical priors are 
irrelevant for predictions.

Our action stimuli evoked a motor facilitation effect (see results section and Supplementary Material), as 
average CSE was greater during the observation of action stimuli (pre-bias block where movies showed the agent 
using either a power or precision grasp) than during non-action stimuli (baseline blocks where movies showed 
a white fixation cross in the middle of a black screen). Despite the fact that our target muscle (FDI) was differen-
tially recruited during execution of the two grips (see material and methods section) the amount of motor facili-
tation was similar for the two grips (precision and power) (see Supplementary Material). This finding is consistent 
with the literature, as even though pure motor resonance is defined as changes in CSE that reflect both action 
specificity and motor facilitation35,36,39,40, most studies report only one of these two changes41–47.

While the absence of action specificity in our data does not question the presence of motor facilitation, it 
does raise the question of the nature of the motor facilitation effect we observed, as it has been shown that motor 
facilitation can occur as a consequence of non-specific factors such as increased attentional demands or task 
difficulty instead of pure motor resonance48–50. Here, task difficulty and attentional demands decreased across 
time for participants in the convergent bias group (who simply relied on by-default biomechanical priors to make 
adaptive predictions in the post-bias block) and increased for participants in the no bias and divergent bias groups 
(who had to inhibit, at least partially, by-default priors in order to make adaptive predictions). Thus, if the motor 
facilitation we observed was a consequence of increasing attentional demands or task difficulty instead of motor 
resonance then it should have been more pronounced in the post-bias phase for the no bias and divergent bias 
groups and less pronounced in the convergent bias group, but this was not the case.

The concordance between our CSE and RB data lead us to favour the perspective that when participants 
have to predict uncertain action goals the motor system’s activity can be tuned to higher-order information 
instead of on-line kinematics. This perspective is supported by a number of studies on human3–5,7,8,51–55 and 
non-human primates1,6,9–11,56 which demonstrate that prior knowledge an observer has about the occurrence (or 
the non-occurrence) of another agent’s behaviours can modulate resonance activity of the motor system. This 
view is also in line with a number of recent studies suggesting that the contribution of the human mirror neuron 
system (which subserves motor resonance) to the processing of other people’s action intentions is crucial only 
under conditions where no general expectations are generated prior to action observation46,57–63. In situations 
where this condition is not met (such as in the present task), activity in the motor system could be influenced by 
other cortical regions (i.e., midline cortical structures including the posterior cingulate cortex, frontal and pari-
etal regions as well) which play a key role in the generation of prior knowledge about upcoming future events64.

Our results are also coherent with data from the domain of action selection, where recent TMS experiments 
have found evidence for the involvement of inhibitory circuits in M1 for response control during the selection 
and the preparation of motor actions (for recent reviews, see65,66). For instance, in a stop signal reaction time task, 
CSE was reduced when participants successfully delayed or cancelled an impending action following an imper-
ative ‘STOP’ cue67. This suggests that such regulatory mechanisms can be driven by the maintenance of inter-
nal goals or the integration of acquired rules68,69 that help individuals make decisions in changing, open-ended 

Figure 2. Changes in prior expectations predict changes in CSE. The positive linear relationship between  
Δ CSE and Δ RB across participant in all three groups (β  =  0.47, p =  0.001). A deviation above or below 0 on 
the Y axis indicates an increase or a decrease in CSE in the post-bias block compared with the pre-bias block; a 
deviation above or below 0 on the X axis indicates an increase or decrease in RB in the post-bias block compared 
with the pre-bias block.
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environments70,71. Direct evidence for this comes from recent work showing that during action selection motor 
cortex activity is sensitive to top-down information pertinent to decisions, such as the participants’ own prefer-
ences72, the accumulation of sensory evidence73, the computation of action value74, the prior distribution of action 
alternatives75–79 or even their biomechanical cost28. Together, these data support the hypothesis that decisions 
about actions can be made within the motor system via a biased competition between representations of action 
alternatives38.

Our results open the interesting, to date unexplored, possibility that a mechanism that shares some similarities 
with that observed during action selection is at play during the prediction of other people’s actions. The main – 
albeit crucial – difference is that such a mechanism does not operate at the level of single action representations. 
In fact, what our results do show is that i) competition between two types of prior information (i.e., biomechani-
cal vs. probabilistic) can alter expectations about the observed agent’s behavior, and that ii) achieving a trade-off 
or compromise between the two priors appears to lead to a suppression or a maintenance of motor resonance 
activity depending on whether these priors compete (divergent bias group) or not (convergent bias group).

A challenge for future studies will be to demonstrate whether the updating of prior expectations can have a 
modulatory effect on motor resonance activity on a trial-by-trial basis. The inherent variability in MEP ampli-
tudes will make this very challenging, but if it can be shown then one could speculate that changes in prior expec-
tations might trigger a regulatory control mechanism within M1 whereby the weight of action representations 
consistent with biomechanical prior information would recursively increase or decrease58 depending on whether 
these representations match or conflict with current and past observations. Interestingly, recent work suggests 
that a similar mechanism is involved in the control of automatic motor imitation, as the anterior cingulate cortex 
and the medial parts of the frontal cortex modulate inferior frontal gyrus activity80,81 with direct consequences on 
the activation threshold of motor representations at play during motor resonance45.

Since the automatic activation of motor representations is often not suitable for predicting unexpected behav-
iours, regulating motor resonance processes through higher-order probabilistic representations of the envi-
ronment may provide an adaptive mechanism to understand and acquire unexpected and new behaviours58,82. 
Remarkably, behaviours that over-ride rules of biomechanical optimization are regularly found in human cultural 
praxes, as in some forms of sport, dance, or music. In these cases, biomechanical suboptimality is often perceived 
as the hallmark of excellence, and for that reason is socially rewarded. In order to predict, understand, appreci-
ate or acquire such praxes, relying on prior expectations acquired from past observations and inhibiting motor 
representations may prove more helpful than merely evaluating the (biomechanical) optimality of the observed 
action.

Methods
Participants. Forty-six healthy volunteers (26 women) aged 19–36 (mean =  24, SD =  4.3) took part in an 
experiment during which they were asked to predict or recognize the final intentions of a filmed agent manipulat-
ing an unfamiliar tool in different ways. All were right-handed according to a standard handedness inventory83, 
naïve to the purpose of the experiment, and reported normal or corrected-to-normal visual acuity. All partici-
pants gave written informed consent and received payment for their participation. The experimental protocol 
was performed with approval of the local Ethical Committee (CPP SUD EST IV) and in accordance with the 
Declaration of Helsinki (World Medical Association, 2008). None of the participants had any neurological, psy-
chiatric, or other medical problems that are contraindicated for TMS84. Participants were randomly assigned to 
one of three groups (see below) and the groups were matched for age (two-tailed t-test, all ts <  0.30, all ps >  0.20) 
and resting motor threshold (two-tailed t-test, all ts <  01.33, all ps >  0.11).

General Procedure. Participants sat in front of a 19-inch computer screen and watched 288 movies ([2 ×  96 
goal-hidden] +  [1 ×  96 goal-visible]) and corticospinal excitability (CSE) was measured during the goal-hidden 
movies using single pulse TMS. The movies lasted 2000 ms (30 frames per second, subtended 35° of visual angle) 
and showed a male agent using his left hand to act upon an unfamiliar handle located on top of a box. Participants 
were required to predict (in the case of goal-hidden movies) or recognize (in the case of goal-visible movies) 
the agent’s intention by saying ‘A’ if they thought the agent was going to open the box or ‘B’ if they thought he 
was going to turn on the light. They were instructed to respond as soon as they thought they had enough visual 
information to produce an accurate response and their responses were recorded on-line with a microphone. 
At the end of each movie their vocal response time (RT) – calculated from the onset of the movie – was dis-
played on the screen for 500 ms. They were explicitly asked to use this feedback to monitor their performance 
and avoid responding before the goal-hidden movies froze (800 ms after onset) or before the goal was clear in the 
goal-visible movies as responding too early would have hindered the integration of the probabilistic bias during 
the goal-visible movie block. If participants did not respond, ‘NO RESPONSE’ was displayed on the screen for 
500 ms and the next trial began 2500 ms later (the average number of missed trials was about 1.9%, that is, 2.2 
trials per block).

Prior to the experimental session participants were familiarised with the task by watching six goal-hidden 
movies and twelve goal-visible movies (containing six optimal and six suboptimal actions). The presentation 
of the stimuli, recording of vocal responses, and TMS triggering were controlled using Presentation software 
(Neurobehavioral Systems, Inc., USA).

Biomechanical effort associated with action stimuli. In each movie the handle located on top of the 
box could either be lifted to open the box or rotated to turn on the light (see Fig. 3a) and the agent could perform 
each action with either a precision grip or a power grip. These grip/goal combinations were deliberately chosen to 
ensure that two of them led to biomechanically effortless, optimal kinematics (power grip/open the box; precision 
grip/turn on the light) while the other two led to biomechanically effortful, suboptimal kinematics (precision 
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Figure 3. Examples of the four combinations ‘grip × goal that participants saw during the experiment. 
All combinations began with the agent’s static hand. (a) The agent could then manipulate the tool using either 
a ‘power’ or a ‘precision’ grip with the intention of either opening the box or turning on the light. The tool was 
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grip/open the box; power grip/turn on the light). To verify that our optimal/suboptimal classification reflected the 
effort that naïve observers associated with each type of action, 10 individuals used a 5-point Likert scale (ranging 
from 0 =  ‘no effort’ to 5 =  ‘very big effort’) to rate the biomechanical (muscular and/or articulator) effort required 
to perform each action34. The results of these ratings reflected our a priori classification: movies featuring optimal 
kinematics were estimated as requiring significantly less effort (precision grip/turn-on the light and power grip/
open the box, mean score =  1.01) than movies featuring suboptimal kinematics (precision grip/open the box and 
power grip/turn-on the lights, mean score =  3.13) (two-tailed t-test, t =  220.87, p <  0.0001).

Manipulating visual uncertainty of action stimuli within the task. A series of 96 goal-visible mov-
ies (24 movies ×  4 grip/action combinations, each movie being unique) was created featuring the agent’s com-
plete action (both the grip and the final goal were apparent, see Fig. 3a) (for more details, see34,55). From these 
goal-visible movies we extracted another set of 96 goal-hidden movies in which the ‘to-be-achieved’ action goals 
were made visually uncertain by stopping the video 800 ms after video onset (see Fig. 3b). The last displayed frame 
remained on the screen for 1200 ms (total duration =  2000 ms) such that the grip (precision or power) but not 
the agent’s final goal (open or turn) was visible (see Fig. 3b). Goal-hidden movies were displayed twice during the 
experiment, once before (pre-bias block) and once after (post-bias block) a single block of goal-visible movies 
(bias block).

Manipulating probability distributions in the goal-visible movies to bias prior expectations.  
Participants were randomly assigned to one of three bias groups and unbeknownst to them, each groups differed 
in terms of the probability of observing the agent achieving goals using an optimal or a suboptimal kinematic 
strategy. Note that the probability of viewing the ‘open the box’ and the ‘turning on the light’ goals remained 
equal across groups. Participants assigned to the ‘NO BIAS’ group had a 50% probability of observing the agent 
achieving his goals using an optimal kinematic strategy. Those assigned to the other groups observed a block of 
goal-visible movies in which there was an 80% (‘CONVERGENT BIAS’) or 20% (‘DIVERGENT BIAS’) probabil-
ity of observing the agent using an optimal kinematic strategy to achieve his goals (see Fig. 4). These labels were 
attributed because the probabilities chosen either converged towards or diverged away from biomechanical priors.

The 96 goal-visible movies were presented as 12 sub-blocks of 8 videos and the probability distributions 
for each group (Convergent, Divergent, No Bias) could be extracted from each sub-block. For example, for the 
Convergent bias group, each sub-block contained 4 precision grip videos (3 precision/turn and 1 precision/open) 
and 4 power grip videos (3 power/open and 1 power/turn). The order of these 8 videos was randomized sepa-
rately for each sub-block and all participants in a given group watched the videos in exactly the same order. This 
block-randomization approach was chosen to avoid any uncontrolled learning biases that might have been unin-
tentionally introduced by a fully randomized design.

Varying the probability distributions of the two types of kinematic strategies allowed us to manipulate the 
prior expectations each participants formed about the goal the agent was about to achieve given the type of grip 
he was currently using. At the end of the experiment participants were questioned about the movies, but none 
of them reported being aware that one type of kinematic strategy was more likely to be observed than another.

Predicting action goals in the goal-hidden movies before and after biasing prior expectations.  
Participants watched 96 goal-hidden movies before (pre-bias block) and after (post-bias block) their prior expec-
tations were biased by exposure to the goal-visible movies (see Fig. 5). The goal-hidden movies were generated 
by taking clips from the longer goal-visible movies. Thus, each movie could be identified as belonging to one 
of the four grip ×  goal combinations. Participants saw the same number of precision and power grips, and the 
four grip/goal combinations were presented an equal number of times (even though the final goal was never 
visible). Both the pre-bias and post-bias blocks were divided into 12 sub-blocks of 8 videos (2 repetitions of each 
of the 4 grip ×  (hidden) goal combinations), and the order of these 8 videos was randomized separately for each 
sub-block. This block randomization was identical for the pre- and post- bias blocks and for all participants.

TMS and electromyographic (EMG) recording. Motor evoked potentials (MEPs) were recorded from 
the first dorsal interosseous (FDI) of the right hand, i.e., the mirror of the hand used by the observed agent85. FDI 
was chosen because it is differentially involved in both the precision and power grasping movements used by the 
agent in the movies45. We measured this by asking a naïve participant to watch as many prototypical exemplars of 

designed such that grasping it using a power grip with the aim of opening the box elicited less biomechanical 
effort than achieving the same goal using the precision grip. Likewise, grasping the tool with a precision 
grip with the aim of turning the light on elicited less biomechanical effort than achieving the same intention 
using the power grip. Thus, among the four possible grip/goal combinations that were presented, two were 
biomechanically optimal and two were suboptimal. During the goal-visible movies (bias block) the action 
lasted until the achievement of its underlying intention (2000 ms). (b) The goal-hidden movies (pre-bias and 
post-bias block) froze 800 ms after the movement onset and the last displayed frame remained on the screen 
for a duration of 1200 ms so that observers had information about the grip but no further information about 
the agent’s action intention. Single-pulse TMS was delivered either 600, 700 or 800 ms after movie onset. For 
each type of movie, participants were required to predict or recognize the intentions that the agent was about 
to achieve given the type of observed grip. Responses were classified according to whether the intentions they 
chose were congruent with an OPTIMAL or a SUBOPTIMAL kinematic strategy.
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Figure 4. The three types of probabilistic bias. Example of how unbiased and biased probabilities were 
implemented within a sub-block of eight consecutive goal-visible movies (a full bias block was composed of 
12 sub-blocks). Participants were randomly assigned to one of the three bias groups. Participants assigned to 
the ‘NO BIAS’ group had a 50% probability of observing the agent achieving his intentions using an optimal 
kinematic strategy (upper panel). Those assigned to the other two groups observed a block of goal-visible 
movies in which there was an 80% (‘CONVERGENT BIAS’, middle panel) or 20% (‘DIVERGENT BIAS’, lower 
panel) probability of observing the agent using an optimal kinematic strategy strategy to achieve his goals. Note 
that in each of these three bias blocks participants had a 50% probability of observing the agent using a power 
grip, 50% probability of observing a precision grip; 50% probability of observing the agent achieving the ‘open 
the box’ intention, and 50% probability of observing the ‘turn on the light’ intention.
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the goal-visible movies as he wanted and then to perform 10 repetitions of each of the four actions (power grip/
open the box; power grip/turn on the light; precision grip/open the box; precision grip/turn on the light) while 
electromyographic activity (EMG) was recorded from his right FDI. On average, there was more activity in FDI 
during the precision grip than the power grip (0.26 mV (± 0.10) vs 0.09 mV (± 0.04), t =  5.58, p <  0.001). Another 
reason for focusing on FDI is that specific changes in FDI’s corticospinal excitability during movement observa-
tion have been reported in the literature, whereas the evidence for such changes in other muscles (i.e., abductor 
digiti minimi muscle – ADM) is meager86–88.

EMG recordings were performed using a single differential surface electrode placed over the muscle belly. 
EMG activity was amplified and digitized using a CED Power 1401 interface (Cambridge Electronic Design, 
Cambridge, England) and sampled at 5 kHz. Spike2 software (Cambridge Electronic Design, Cambridge, England) 
was used for off-line data analysis. A Magstim 2002 stimulator (The Magstim Company, Carmarthenshire, Wales) 
generated single-pulse stimuli which were delivered through a figure-of-eight coil (70 mm diameter) placed tan-
gentially to the scalp with the handle pointing backward at a 45° angle away from the midline89. Participants wore 
a tight-fitting bathing cap on which the coil was moved over the left hemisphere to determine the FDI optimal 

Figure 5. The experimental session. The pre and the post-bias blocks featured goal-hidden movies (high 
visual uncertainty) where only the grip (not the final goal) remained visible until the end of the trial. TMS was 
delivered over the left M1 at 600, 700 or 800 ms after the movie onset. Participants were required to predict the 
final intention of the agent. The bias block featured goal-visible movies (low visual uncertainty) where both the 
grip and the final intention were visible and participants were required to recognize the final intention of the 
agent. No TMS was delivered in this block. Across groups, participants were experimentally biased toward one 
of the two alternative kinematic strategies (convergent bias =  80% optimal kinematics; divergent bias =  20% 
optimal kinematics) or were not biased at all (no bias =  50% optimal kinematics). The three TMS baseline 
blocks each consisted of 20 TMS pulses delivered while participants looked at a white cross located at the center 
of a black screen. MEPs recorded during these blocks were used as a baseline to compute the variation of MEP 
amplitude during the experiment. Baseline blocks were inserted before and after the pre-bias block, and after 
the post-bias block.
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scalp position (OSP). The OSP was then marked on the cap and, together with the coil orientation, was recorded 
using the SofTaxic Navigator system (EMS, Italy). The coil was hand-held and its position with respect to the 
target on the standard reconstructed brain was continuously monitored during the experiment.

During the experiment stimulation intensity was set at 120% of the FDI resting motor threshold (rMTs ranged 
from 29% to 53% of the maximum stimulator output, mean =  40%, SD =  5), defined as the lowest stimulation 
intensity able to evoke 5 out of 10 MEPs at the OSP with an amplitude of at least 50 μ V90.

Baseline levels of CSE were established by delivering 20 single TMS pulses while participants viewed a white 
fixation cross located in the middle of a black screen25. Since the experiment lasted nearly 50min, baseline CSE 
levels were assessed at three different time points: before the pre-bias block, after the pre-bias block (i.e., before 
the bias block), and after the post-bias block (see Fig. 5).

TMS measurements were made during the pre-bias and the post-bias blocks in which the agent’s goals were 
hidden (see Fig. 5). The stimulation was applied over the left M1 at either 600, 700, or 800 ms after onset. We 
chose these timings to ensure that the type of grip had already been fully visible for at least 200 ms and because 
earlier timings would have decreased our chances of observing muscle-specific CSE modulation86,91–94. Moreover, 
randomly applying TMS at these three times made the TMS delivery as unpredictable as possible given the small 
time window in which we wanted to simulate. The pre-bias and post-bias blocks contained 12 sub-blocks of 8 
movies and TMS was delivered on 7 of the 8 movies in each sub-block. Thus, single-pulse TMS was delivered 
on approximately 80% of goal-hidden movies (21 MEPs for each of the 4 grip/hidden goal combinations = 84 
trials/goal-hidden block), while no pulse was delivered on the remaining 20% (24 trials/goal-hidden block). This 
procedure allowed us to minimize anticipatory motor activity that could have contaminated the EMG responses 
evoked by the stimulation.

Data processing
Prior expectations. For each movie presented during the experiment participants were required to choose 
whether the agent was going to open the box by lifting the handle (intention A) or turn-on the light by rotating 
the handle (intention B). These responses were used to calculate prior expectations74,95,96. The first step in this 
calculation was to classify the responses as optimal or suboptimal. An ‘optimal’ response refers to the prediction 
of an intention that is congruent with an optimal (effortless) kinematic strategy, i.e., predicting the ‘open the 
box’ intention when a power grip is viewed, and predicting the ‘turn on the light’ intention when a precision grip 
is viewed. A ‘suboptimal’ response refers to the prediction of an intention that is congruent with a suboptimal 
(effortful) kinematic strategy, i.e., predicting the ‘open the box’ intention when a precision grip is viewed, and 
predicting the ‘turn on the light’ intention when a power grip is viewed. Before calculating prior expectations and 
how they changed across the experiment, we first ensured that participants correctly recognized the goals in the 
goal-visible movies (a prerequisite for integrating the probability bias in these videos). To do this we analyzed the 
error rates in the goal-visible movies (see Supplementary Materials and Results).

Next, prior expectations were calculated using a simple Bayesian learning scheme (ideal Bayesian observer) 
in which all marginal and conditional probability estimates were updated after each new event97,98. Our ideal 
Bayesian observer was initialized with flat prior distributions at the beginning of the pre-bias and the bias blocks. 
However, because it is unlikely that participants remember everything they see throughout the task (ideal observer 
model), we modeled their individual limited memory capacity by including a memory decay parameter (α) that 
reduced the weight of past events (real observer model). For each new event et, presented at time step t, current 
values of the marginal probability of the event i were defined in the following way:
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where p is the position of a particular action backward from time step t, αi
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at position p, and u(t) a binary function indicating whether the optimal (u(t) =  1) or suboptimal (u(t) =  0) action 
intention was chosen at time step t. For α =  1 (ideal observer), there is no information loss and all past actions 
are weighted equally, while for α >  1 (real observer), past observations are discounted. The parameter α was fit by 
maximizing the least-square given the data (Optimal Responses, OR) such that

β β ε= + +logit OR( ) (2)prior0

where the standardized parameter estimate βprior represents the independent contribution of the participant’s 
prior expectations to the prediction of intentions congruent with optimal kinematics (optimal). The resulting 
weighted probability estimates were then averaged across all trials of each block and used to obtain a response 
bias (RB) reflecting the participant’s belief that a certain type of action intention or goal is about to occur given the 
type of observed grip. Near-zero RB values indicate that a participant is not biased towards either optimal or sub-
optimal responses, whereas deviations from zero indicate a bias for ‘optimal’ (RB >  0) or ‘suboptimal’ responses 
(RB <  0). For each participant, the mean of the RB values derived from the real observer model was calculated 
separately for each of the three movie blocks and for each grip. Participants (n =  2) with a RB greater than the 
mean RB of the entire group (n =  46) by more or less than 2SDs in at least two of these conditions were removed 
from the analyses. After rejection of these two participants the no bias and convergent bias groups contained 15 
participants, while the divergent bias group contained 14 participants.

Corticospinal excitability (CSE). CSE was measured as the peak-to-peak amplitude of the MEP in a 50 ms 
window following the TMS pulse. EMG activity was visually monitored during the experiment to ensure muscle 
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relaxation, and trials were discarded if the root mean squared (RMS) of the EMG during the 200 ms prior to the 
TMS pulse exceeded the average RMS (of all valid TMS trials in that block) by more than 2SDs. Trials were also 
excluded if a MEP could not be distinguished from the background EMG or if the peak-to-peak amplitude of the 
MEP was ± 2SDs beyond the mean calculated in each condition of each goal-hidden block. The total percentage 
of excluded MEPs ranged between 1 and 6% (mean: 3.5%) and was comparable across groups.

MEPs in the first block of goal-hidden movies were expressed as a percentage of the mean MEP amplitude 
recorded during baseline blocks presented before and after the pre-bias block (baseline 1 =  40 MEPs), while MEPs 
in the second block of goal-hidden movies were expressed as a percentage of the mean MEP amplitude recorded 
during baseline blocks presented after the pre-bias block and after the post-bias block (baseline 2 =  40 MEPs) (see 
Fig. 5). To account for the skewed distribution of MEP ratios all values were then log10 transformed99 and subse-
quent analyses were performed on the transformed data.
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