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Abstract

Recent views of categorization suggest that categories are action-based rather than arbitrary symbols. Three connec-

tionist simulations explore the hierarchical organization of categories in the framework of an action-based theory of

categorization. In the simulations an organism with a visual system and a two-segment arm has to reach different points

in space depending on the object seen and on context. The context indicates whether to put the object in a superordinate

or in a basic category. The results show that: (a) superordinate categories are easier to learn than basic ones; (b) the

more similar the actions to perform with basic and superordinate categories, the easier to learn the task; (c) violation

of category boundaries leads to less good performance.
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1. Introduction

Traditional studies of categorization have often

been guided by the implicit assumption that con-
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cepts, i.e., the mental representations of categories,

are made of arbitrary symbols. This view implies a

translation process from sensory-motor experi-

ences into symbols which are arbitrarily related

to their referents. In alternative, recent views con-
ceive of concepts as forms of re-enactment of sen-

sory-motor experiences (Barsalou, 1999; Barsalou,

Simmons, Barbey, & Wilson, 2003; Glenberg,
ed.
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1997; Smith, 1995; Smith & Katz, 1996; Thelen,

Schöner, Scheier, & Smith, 2001). In this perspec-

tive, concepts are action-based and the informa-

tion they contain helps to prepare for situated
actions (Barsalou, 2002; Wilson, 2002).

In this paper, we describe some connectionist

simulations which explore various aspects of this

view of concepts or categories as action-based.

The general assumption is that neural networks

that respond to sensory input with movements

learn to form categories on the basis of the output,

i.e., the action, with which they respond to the in-
put rather than on the basis of the perceptual char-

acteristics of the input.

More specifically, our aim in this paper is to ex-

plore with neural network simulations how an ac-

tion-based theory of categories, can explain the

formation of a hierarchical structure of categories.

With the term hierarchical structure we refer to the

different levels of generality at which knowledge
can be organized. For example, knowledge can

be organized around more general categories (ani-

mals, furniture, etc.) or more specific ones (cats,

dogs, tables, etc.). The first are called superordi-

nate, the second basic (level) categories. These

two kinds of categories are linked by a class inclu-

sion relations: basic categories are included in

superordinate ones. This hierarchical organization
has the advantage of being economical from a cog-

nitive point of view, even if recently the transitivity

and advantages of cognitive economy have been

questioned (Hampton, 1982; Sloman, 1998).

Within the general framework of an action-

based theory of concepts or categories, we aim to

replicate and explain some empirical results con-

cerning hierarchical levels of categories.
(1) Precedence of global or superordinate catego-

ries over specific or basic categories. In the litera-

ture on categorization much convergent evidence

shows that basic categories (e.g., table, dog) are

generally preferred for categorization and are ac-

quired by children earlier than superordinate ones

(Markman, 1989; Rosch, Mervis, Gray, Johnson,

& Boyes-Braem, 1976). However, as highlighted
by Mandler (1992a, 1992b, 1998), this evidence is

based on linguistic tasks. Mandler and Bauer

(1988), Mandler and McDonough (1998) and

Mandler, Bauer, and McDonough (1991) have
shown that with non-linguistic tasks infants first

form global categories, which then help them in

the acquisition of language and of more specific

categories. Simulation 1 aims to test whether
superordinate categories are easier to learn, and

thus are learned earlier, than basic level categories.

Consider that, depending on the context, it may be

more adaptive to use either global (e.g., animal) or

more specific categories (e.g., dog). For example,

when our ancestors were in danger it may have

been useful to simply discriminate between preys

and predators, while when they had to feed ani-
mals it may have been useful to distinguish be-

tween dogs, cows, chickens, etc. Accordingly,

context is introduced as a cue for using either

superordinate or basic action-based categories.

(2) Influence of action similarity on the formation

of superordinate categories. If action influences cat-

egorization, superordinate categories should be

more easily learned the more the action to perform
with them is similar to the action to perform with

their basic level members. This hypothesis it tested

by comparing Simulations 1 and 2.

(3) Influence of category boundaries on the for-

mation of superordinate level categories. Studies

on categorization distinguish between Common

Taxonomic (CT) categories, as for example ani-

mals and vehicles, and Goal Derived (GD) catego-
ries, as for example birthday presents (Barsalou,

1983, 1985, 1991). CT categories, which are more

stable in memory, include perceptually similar ob-

jects that belong to the same domain, while GD

categories group together objects which are not

necessarily perceptually similar nor of the same

domain (e.g., birthday presents may include pets,

flowers, books, and cars). The novelty in this study
is that we build superordinate CT and GD catego-

ries which are totally action-based, i.e., the influ-

ence of perceptual similarity among the category

members is ruled out. This means that superordi-

nate categories are formed either assembling two

action-based basic categories (CT superordinate),

each containing two exemplars, or assembling four

exemplars of four different basic categories (GD
superordinate).

The question of whether more general catego-

ries are more easily learned and distinguished from

basic categories when they are formed by respect-
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ing category boundaries or violating them is tested

by comparing the first two simulations with the

third one. We predict that when category bounda-

ries are violated it is more difficult to learn the
task.
2. Neural networks and action

Neural networks are systems for transforming

activation patterns into other activation patterns.

An activation pattern in the input units is trans-
formed into a different activation pattern in the

first layer of internal units and then this activation

pattern is transformed into another activation pat-

tern in the second layer of internal units until the

output activation pattern is generated. What are

the principles that govern these transformations?

Neural networks follow two principles. The first

principle is: ‘‘Make activation patterns corre-
sponding to stimuli that should be responded to

with the same output activation pattern progres-

sively more similar to each other’’. The second

principle is: ‘‘Make activation patterns corre-

sponding to stimuli that should be responded to

with different output activation patterns more dif-

ferent from each other’’. The first principle can be

called the principle of categorization. The second
principle can be called the principle of

discrimination.

We can measure similarity among activation

patterns quantitatively if we assume that activa-

tion patterns are points in the abstract hyperspace

which corresponds to each layer of units. The

hyperspace has as many dimensions as there are

units in the layer and each dimension of the hyper-
space measures the activation level of one unit.

Activation patterns are represented as points lo-

cated, for each dimension, in the position that cor-

responds to the activation level of the unit

represented by the dimension. Therefore, in the

hyperspace corresponding to a given layer of units

are represented all possible activation patterns that

may be observed in that layer of units. We can
measure similarity between activation patterns in

each particular layer of units as the distance be-

tween the points that represent the activation pat-

terns in that layer. The two principles of
categorization and discrimination say that in the

successive layers of internal units of a neural net-

work the distance between points that represent

activation patterns which must be responded to
with the same output tends to decrease (categori-

zation), while the distance between points that rep-

resent activation patterns which must be

responded to with different outputs tends to in-

crease (discrimination).

If we designate with the term ‘‘cloud’’ the set of

points in some particular layer of units that repre-

sents activation patterns corresponding to stimuli
which must be responded to with the same output,

the internal organization of a neural network can

be described by saying that as activation propa-

gates from input to output the neural network

tends to make its individual ‘‘clouds’’ progres-

sively smaller (categorization) and the distance

between distinct ‘‘clouds’’ progressively larger

(discrimination).
This interpretation of the internal organization

of a neural network makes it clear that the net-

work�s internal representations (i.e., the activation
patterns observed in the successive layers of inter-

nal units) are dictated by the network�s output.

The two principles of categorization and discrimi-

nation are output-based principles. Inputs are

internally represented in terms of the output with
which the network must respond to the input.

The properties of the input, those which distin-

guish one input from another input, have some

control on the internal representations only in

the first layers of internal units. But even at this

early stage the internal representations follow the

principles of categorization and discrimination

which are output-based principles. ‘‘Clouds’’ are
defined in terms of a neural network�s motor out-

put, not in terms of the network�s sensory input.

‘‘Clouds’’ are formed in such a way that the aver-

age distance of the points included in the ‘‘cloud’’

from the center of the ‘‘cloud’’ tends to be smaller

than the distance between the centers of distinct

‘‘clouds’’. If the neural network is a sensory-motor

network, i.e., a network which maps sensory in-
puts into motor outputs, the sensory inputs tend

to be internally represented in terms of the similar-

ity relations of the motor outputs rather than

in terms of the similarity relations of the sensory



Fig. 1. The organism and the retina with one of the eight

objects.
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inputs. If ‘‘clouds’’ are categories, categories are

action-based rather than stimulus-based.

In previous work on categorization and action

we found that the internal representations of an
organism�s neural network appear to be organized

in terms of macro-actions, that is sequences of

movements (micro-actions) that allow the organ-

ism to correctly respond to perceived objects (Di

Ferdinando & Parisi, 2004). In other simulations

it was shown that the organism�s neural network

was able to flexibly organize itself in order to adapt

to different tasks. The network�s internal represen-
tations of objects reflect the current task and not

the perceptual similarity between the objects. In

absence of task information, however, perceptual

similarity is the best predictor of categorization

(Borghi, Di Ferdinando, & Parisi, 2002; Di Ferdi-

nando & Parisi, 2004; Di Ferdinando, Borghi, &

Parisi, 2002). This paper goes one step further: it

aims to apply an action-based theory of categori-
zation to a specific problem in the literature of cat-

egorization, the study of hierarchical levels.
3. The model

Imagine an organism which lives in a bidimen-

sional environment containing eight different ob-
jects. The organism has a simulated visual system

with which it sees only one object at a time and

a two-segment arm which it can move to reach

some specific position in space which depends on

the particular object seen and on the particular

context (task). In each trial the initial position of

the arm is random. The organism can know the

arm�s position at any given time based on proprio-
ceptive input from the arm�s two segments. The

organism�s behavior is controlled by a nervous sys-

tem, which is simulated using an artificial neural

network.

The visual system is a 3 · 3 = 9 cell matrix (nine

input units) and each object is very simple: it ap-

pears as a particular filled cell in the matrix of nine

cells (one of the nine input units has an activation
level of one while the remaining eight cells have

zero activation). There is a total of eight objects

(in the central cell no object can appear). Fig. 1

shows the organism who is currently seeing an
object. Notice that all objects are identical to each

other, because we wanted to rule out the influence

of perceptual similarity. They are only distin-

guished on the basis of the spatial location in the

retina in which they appear.

The proprioceptive input from the arm which

tells the organisms the position of their arm at
any given time specifies the angle of the forearm

with the shoulder and the angle of the arm with

the forearm (two input units).

The network architecture includes a third set of

two input units which encode two different con-

texts: context A, encoded as 10, and context B, en-

coded as 01.

The network has two output units encoding
changes in the arm�s two angles and therefore

determining the arm�s movements.

The nine visual input units and the two context

units are connected with the two output units

through an intermediate layer of four hidden units

whereas the two proprioceptive units project di-

rectly to the two output units. The network archi-

tecture is described in Fig. 2.
The organisms must respond to this input by

moving the arm in such a way that the arm�s end-
point (the hand) reaches one particular location in

space (i.e., presses some particular button) which

depends on the particular object which is presented



Fig. 2. The neural network architecture.

Fig. 3. The spatial locations that must be reached by the arm�s
endpoint to form four subordinate categories comprising two

objects each and the two superordinate categories comprising

four objects each.
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to the organism in any given epoch and on the

context. Thus, they have to perform a different

kind of action with the same object depending on

the context. This scenario addresses a problem
we encounter in real life: depending on the kind

of context, it may be advantageous to categorize

objects at the superordinate or at the basic level.

For example, it may be useful to distinguish pred-

ators and preys when we have to decide whether to

run away or not, while it may be useful to distin-

guish dogs and cows when we have to go hunting

or to drink some milk.
In our simulations, the eight objects are

grouped into four basic categories, two objects

for each basic category, and into two superordi-

nate categories, four objects per each superordi-

nate category. In context A the organisms must

use the basic categories. They have to press one

of four buttons depending on the object�s basic le-
vel category, whereas in context B they have to
press one of two buttons depending on the object�s
superordinate category (see Fig. 3). Notice that

while basic categories are the same in all the three

simulations, the way superordinate categories are

formed varies in the three simulations.

All organisms live the same amount of time

(number of input/output cycles of their neural net-

work). Each individual organism is a member of a
generation of 100 organisms. At the end of life the

20 individuals which perform better in the task are

selected for reproduction. Five copies of the con-

nection weights of their neural network are gener-
ated and assigned to five new individuals

(offspring). The 20 · 5 = 100 offspring constitute

the next generation. Reproduction is nonsexual

but an average of 10% of the inherited connection
weights are randomly mutated so that offspring be-

have similarly but not identically to their parents.

In order to obtain more reliable results we run

10 replications of each simulation starting with dif-

ferent randomly generated connection weights.
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4. Simulations

4.1. Simulation 1

In this simulation, we address the first hypothe-
sis: we test whether superordinate concepts are

easier to learn, and thus are learned earlier in

terms of number generations needed to achieve

an appropriate performance level, than basic

categories.

4.1.1. Task

In this simulation the action the organism has
to perform in response to all four members of a

superordinate category is similar to the actions to

be performed in response to the 2 + 2 members

of its two basic sub-categories and dissimilar to

the actions performed with the 2 + 2 members of

the two basic sub-categories of the other superor-

dinate category. Action similarity is measured in

terms of spatial distance: the button (space loca-
tion) that the organism has to reach with its arm

in response to the four members of one superordi-

nate category is spatially close to the buttons that

must be reached in response to the 2 + 2 members

of 2 basic sub-categories of that superordinate cat-

egory (see Fig. 4(a)).

4.1.2. Results

We trained the organisms for 3000 generations.

As Fig. 5 shows (condition ‘‘Close’’), the organ-

isms were able to learn the task.
Fig. 4. The spatial locations that must be reached by the arm�s end

Simulation 3 (panel c).
In order to verify whether superordinate level

categories are easier to learn and thus formed be-

fore, in terms of number of generations, than basic

categories, we performed a test at successive stages
during the training (every 500 generations). In this

test the organisms were presented with all possible

trials starting from five different random positions

of the arm for each trial and we computed the per-

centage of targets reached for context A (basic)

and for context B (superordinate) (see Fig. 6).

On these results we performed two sets of Ano-

vas. In the first set we compared the performance
of the best individuals while in the second set we

compared the performance of the whole popula-

tion (average).

In all cases we found a clear advantage of super-

ordinate over basic level categories (p < 0.01).

4.1.3. Discussion

Given that all objects are perceptually identical,
our results show that organisms form action-based

categories independently from the perceptual sim-

ilarity of the category members.

More interestingly, the comparison between

learning superordinate and basic categories shows

that superordinate categories are acquired more

easily (earlier) than basic level categories. The

explanation seems to be quite straightforward:
forming more specific categories by associating

the same set of objects with a larger number of dis-

tinct actions poses a greater burden on the same

pool of computational resources (the network�s
point in Simulation 1 (panel a), Simulation 2 (panel b), and



Fig. 5. Comparison between Simulation 1 (close), 2 (far), and 3 (GD). Number of objects reached by the best organism and the whole

population. Average of 10 replications.
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connection weights) than forming fewer more gen-

eral categories by associating the objects with fewer

different actions.
This result has interesting implications for psy-

chological studies of categorization. In fact, it sup-

ports the view according to which, before learning
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language, infants first form more global categories

and only later they form more specific categories

(Mandler et al., 1991). Furthermore, it helps to ex-

plain why this happens: simply because it is sim-
pler to associate different objects with a smaller

number of different actions than with a greater

number of actions.

4.2. Simulation 2

The aim of Simulation 2 is to test whether the

performance is less good than that of Simulation
1 when the action in response to the members of

a superordinate category is dissimilar to the ac-

tions performed in response to the members of

the two basic level sub-categories of that superor-

dinate category. In Simulation 1 the action to be

performed at the superordinate level is to reach a

button which is spatially located between the two

buttons to be reached in response to the members
of the category�s to subcategories. In contrast, in

Simulations 2 the button to be reached at the

superordinate level is spatially located on the

opposite side with respect to the two buttons to

be reached when responding at the basic category

level. In real life, an example of action similarity

between the actions to perform with superordinate

and basic categories is the following: if I have to
wash an indument, I typically put it into the wash-

ing machine (I simply categorize it at the superor-

dinate level); however, I would better wash a

delicate skirt (basic level) by hand, and I would

better bring an elegant jacket (basic level) to the

laundry.

Our hypothesis is that the organism has more

difficulties in forming action-based categories if
the actions to be performed with superordinate le-

vel categories are dissimilar from those to perform

with basic categories (hypothesis 2). Accordingly,

performance in Simulation 2 should be worse than

performance in Simulation 1.

4.2.1. Task

In this simulation the action to be performed
with the four members of a superordinate category

is different from the two actions to perform with

the 2 + 2 members of the respective basic sub-

categories. In fact, when responding to a superor-
dinate category (context B) the organism has to

reach with the hand the central location on the

opposite side with respect to the two locations to

be reached when it has to respond to the category�s
basic sub-categories (context A) (see Fig. 4(b)).

4.2.2. Results

As predicted, the performance of Simulation 2

is worse than that of Simulation 1 (see Fig. 5, con-

dition ‘‘Close’’ vs. ‘‘Far’’).

In order to compare the data obtained in the

two simulations, we performed two sets of three
within subjects Anovas. In the first set, we com-

pared the average number of objects reached with

superordinate and basic categories by the best

individuals of each of the 10 replications at gener-

ations 1000, 2000, and 3000. In the second set we

compared the average number of objects reached

with superordinate and basic categories by the

whole population of each replication at generation
1000, 2000, and 3000. The independent variable,

the type of simulation performed (Simulation 1

or 2), was manipulated between-subjects.

The results are straightforward and confirm our

prediction. The performance of both the best indi-

vidual and the population average in Simulation 1

is significantly (p < 0.01) better than in Simulation

2. This clearly indicates that there is an effect of ac-
tion similarity, as predicted.

4.2.3. Simulation 3

In the preceding simulation we found an effect

of the similarity of the actions to be performed

at the basic level and at the superordinate level.

In Simulation 3 the superordinate category is

formed by four members, each of which belongs
to a different basic category (Fig. 4(c)). This means

that the location the organism has to reach while

categorizing at the superordinate level is close

(similar) to the location it has to reach with two

of the superordinate category members, while it

is far from the location it has to reach with the

other two members. Thus, if only action similarity

influences performance, the results of Simulation 3
should be intermediate between those of Simula-

tions 1 and 2.

We predict, instead, that performance is influ-

enced not only by action similarity but also by



Fig. 7. Not ecological network architecture used for the control

with back-propagation.
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respecting vs violating category boundaries. In

fact, these simulations differ from both preceding

simulations because categories boundaries are vio-

lated. This means that a superordinate category
(e.g., animal) is not formed by grouping together

the members of two already existing basic catego-

ries (e.g., dog and robin) (CT categories), but by

putting together the members of the four different

basic categories (e.g., the superordinate category

�birthday presents� is formed by �dog�, �doll�, etc.).
In the literature on categorization categories which

violate category boundaries are called GD or goal
derived categories (Barsalou, 1983, 1985, 1991;

Vallée-Tourangeau, Anthony, & Austin, 1998).

Summarizing, in Simulation 3 it should be more

difficult to form action-based superordinate cate-

gories in that superordinate categories are GD

categories, i.e., they assemble together one mem-

ber of each of the four different basic categories

(hypothesis 3).

4.2.4. Task

In this simulation, when responding to superor-

dinate categories the organism has to reach with

the hand the central button on one side of the but-

ton space, thus performing an action similar to

that performed with two of the objects included

in the category and dissimilar to that performed
with the other two members (see Fig. 4(c)).

4.2.5. Results

Fig. 5 shows that, as predicted, organisms per-

form worse in Simulation 3 than in Simulation 1,

whereas there is no difference between Simulations

2 and 3. This indicates that the bad performance of

organisms in Simulation 3 does not depend only
on action similarity between superordinate and ba-

sic categories. If this were the case, in fact, per-

formance in Simulation 3 should be better than

performance in Simulation 2, given that, as we

have seen, the average distance between the

buttons to be reached with superordinate and ba-

sic categories is smaller in Simulation 3 than in

Simulation 2.
The Anovas and the post hoc Newman–Keuls

comparing the performance of the best individual

and of the whole population in the three simula-

tions every 1000 generations indicate (p < 0.1) that
the performance of both the best individual and

the average of the population in Simulation 3 is

not significantly different from that of Simulation

2 while it differs from that of Simulation 1.
This shows that not only action similarity has

an effect but that there is also an effect of the vio-

lation of category boundaries.

In order to isolate the effect of the violation of

category boundaries from the effect of action

similarity, we performed a control simulation in

which the output of the neural network does not

control the movement of the arm, but directly
determines the action to perform with a certain

category member. More specifically, there are four

output units encoding in a localistic way the four

basic categories and two additional output units

encoding the two superordinate categories. The

task is to activate the two output units that corre-

spond to the basic and superordinate categories to

which the object currently seen belongs.
Given that the arm has not to be moved in this

simulation, the proprioceptive input is not consid-

ered. The new neural architecture is shown in

Fig. 7.

To train the network to solve the task we used a

back-propagation algorithm. Given that there is

no movement of the arm, there is no difference be-

tween the condition ‘‘spatially close’’ and the con-
dition ‘‘spatially distant’’. We refer to both these
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conditions as CT. We compared this condition

with the condition GD. In this new scenario the

only difference between CT and GD categories is
the violation of category boundaries. Fig. 8 shows

that CT categories are learned faster that GD cat-

egories, thus confirming our hypothesis.
5. Conclusion

In this research, we show with three simulations
that neural networks can form action-based cate-

gories. In fact, rather than based on perceptual

similarity between category members, in our simu-

lations categories are formed on the basis of the

kind of action to be performed (see also Borghi

et al., 2002; Di Ferdinando et al., 2002). In addi-

tion, we show that neural networks are able to

use different action-based categories, at both the
superordinate and basic levels, depending on the

context.

The similarity of the action to be performed at

different hierarchical levels influences categoriza-

tion: in fact, superordinate action-based categories

are easier to form if their members have to be re-

sponded to with actions similar to those used with

the members of their basic sub-categories.
In our simulations, we not only show that an

action-based theory of categorization is plausible

and that it works, but also that it replicates and ex-
plains various empirical results discussed in the

psychological literature on categorization.

First, we show that an action-based theory of

categories can explain the formation of a hierar-

chical organization in categorization, and the role

played by context in selecting a categorization cri-

terion. Consider that the hierarchical structure of

knowledge has traditionally been explained in
symbolic terms. In our work, we show that hierar-

chical organization may be action-based, suggest-

ing that we might form superordinate categories

on the basis on the similarity of the actions per-

formed with their members rather than on the

basis of perceptual similarity between them. Con-

sider, however, that in this study we do not ad-

dress the point of whether action similarity
overcomes perceptual similarity. By underlying

the role of action we do not intend to exclude

that in real life perceptual similarity may play

an important role for categorization (Goldstone,

1994).

Second, our results indicate that, in absence of

linguistic input, superordinate categories are ac-

quired earlier than basic ones. This result has



A.M. Borghi et al. / Cognitive Systems Research 6 (2005) 99–110 109
interesting implications for psychological studies

of categorization. In fact, it supports the view

according to which, before learning language, in-

fants first form more global categories and only la-
ter they form more specific basic level categories

(Mandler et al., 1991). Consider, however, that

our results are not necessarily in conflict with stud-

ies showing the importance of basic level categori-

zation (Rosch et al., 1976). In fact, studies on

categorization generally use linguistic tasks and fo-

cus on linguistic categories (Malt, Sloman, Gen-

nari, Shi, & Wang, 1999). Once categories are
designed with verbal labels, basic level categories

may acquire an advantage over superordinate level

categories due to the higher frequency of basic le-

vel labels in comparison with superordinate level

labels. This issue is not addressed here and it is

worth of further exploration.

Third, we show that neural networks have more

difficulties in learning superordinate GD catego-
ries, i.e., categories which violate basic level cate-

gory boundaries, than superordinate CT

categories that do not violate such boundaries.

In general, in the literature of categorization it is

argued that GD category are less stable in memory

than CT categories (Barsalou, 1991). This instabil-

ity is considered to be due to the less frequent use

of these categories due to the perceptual dissimilar-
ity between the category members. The novelty in

our study is that the categories we use are

completely action-based – thus the influence of

perceptual similarity is ruled out. Using only

action-based categories our study suggests that

the instability of GD categories may depend on

the frequency with which an action is performed

with a certain category member, i.e., on the exist-
ing consistency between the canonical actions we

perform with an object and the action we are

required to perform in a new context.
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